QTP关键技术(五) - 并列Action间的参数传递

原创 2007年09月20日 14:19:00
 
 
 
 
思路:将Action1的输出参数,传递给Action2作为输入参数。
 
1)创建两个Action,关系是并列关系,不是嵌套的.
2)右键Action1,选Action Properties,在Output Parameters中添加参数OutAction1,点OK
 
3)右键Action2,选Action Properties,在Input Parameters中添加参数InAction2,点OK
   此文为Hollyzhao于2007年09月在 http://blog.csdn.net/softesting 发布,夜深了,有点累~
4)将Action1的输出OutAction1,传递给Action2的输入InAction2
 此文为Hollyzhao于2007年09月在 http://blog.csdn.net/softesting 发布,夜深了,有点累~
右键Action2,选Action Call Properties,弹出Action Call Properties窗口;
选中InAction2的Value,弹出Value Configuration Options窗口;
在Parameter中共有四项可供选择,选择Test/Action parameter,
在Output from previous call(s)中的Action选择Action1,Parameter中选择OutAction1;
表示Action2中的参数InAction2,是由Action1中的参数OutAction1传递而来。
以上就完成了两个并列Action间参数的传递,Action2只能调用Action1的输出参数,而不能调用Action的输入参数。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

WPF架构关键技术剖析(3)--做自己的交互Action(1)

本来打算写得细些,但最近要换工作,所以比较忙点,而且也觉得没必要写那么多虚的东西,因此这里不再按照提纲进行,而是从代码入手,看清Silverlight的交互机制.依赖属性和附加属性的基本类都是一样的,...

WPF架构关键技术剖析(3)--做自己的交互Action(2)

下面我们利用附加属性,将我们准备好的Action集合能作为附加属性出现在xaml中: 1)附加属性类: ///     /// 附加属性定义类,注意必须是静态的,这有点类似于给类增加扩展方法。...

WPF架构关键技术剖析(3)--做自己的交互Action(3)

1)测试数据准备: //这是我学习treeview绑定时用的,也随带给不是很会用treeview绑定的网友们一个例子. A)层级类,树形结构. public class Folder     ...

MFC六大关键技术之消息映射与命令传递(五,六)

题外话:刚开始学视窗程序设计的时候,我就打印了一本Windows消息详解,里面列举了各种已定义消息的意义和作用,共10多页,在编程的时候翻翻,有时觉得很受用。我发觉很多编程的朋友,虽然每天都面对消息,...

深入浅出MFC学习笔记(第三章:MFC六大关键技术之仿真:命令传递) .

命令传递(Command routing)      消息如果是仅仅从派生类流向父类,那就非常简单了。然而MFC用来处理消息的C++类,并不是单线发展的。document/view也具有处理消息...

MFC六大关键技术之(5)(6)——消息映射与命令传递

MFC六大关键技术之(五)(六)——消息映射与命令传递 题外话:刚开始学视窗程序设计的时候,我就打印了一本Windows消息详解,里面列举了各种已定义消息的意义和作用,共10多页,在编程的时候翻...

深入浅出MFC学习笔记(第三章:MFC六大关键技术之仿真:命令传递) .

命令传递(Command routing)      消息如果是仅仅从派生类流向父类,那就非常简单了。然而MFC用来处理消息的C++类,并不是单线发展的。document/view也具有处理消息的能...

MFC六大关键技术之——消息映射与命令传递

转载自:http://blog.csdn.net/liyi268/article/details/623391 题外话:刚开始学视窗程序设计的时候,我就打印了一本Windows消息详解,里面...

5G关键技术:确定创新机会(五)

创新机会 开启创新机会意味着探索技术领域来引导某些技术议程的研究工作的开展。我们观察了在不同科学和工程杂志中的与5G相关的较为普遍的技术问题。其中有18篇研究论文将5G作为其主要研究话题。这些发表成...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)