[G+smo]细分网格时控制点的排序

原创 2016年05月31日 11:00:55

细分方案:

for (int i = 0; i < numElevate; ++i)
{
patches -> degreeElevate();
}

for (int i = 0; i < numHref; ++i)
{
patches -> uniformRefine();
}

升阶和加密的次序影响最终结果。


GISMO_DEBUG: 

Patch 0: control points  

 0 100   0

  0  50   0

  0   0   0


Refine 1 time:

GISMO_DEBUG: Patch 0: control points   

 0 100   0
  0  75   0
  0  25   0
  0   0   0


refine twice:

GISMO_DEBUG: Patch 0: control points    0  100    0
   0 87.5    0
   0 62.5    0
   0 37.5    0
   0 12.5    0
   0    0    0

degree elevate 1:

GISMO_DEBUG: Patch 0: control points       0     100       0
      0 66.6667       0
      0 33.3333       0
      0       0       0

degree elevate 2:

GISMO_DEBUG: Patch 0: control points   0 100   0
  0  75   0
  0  50   0
  0  25   0
  0   0   0

degree elevate 1, refine 1

GISMO_DEBUG: Patch 0: control points       0     100       0
      0 83.3333       0
      0      50       0
      0 16.6667       0
      0       0       0

 refine 1, degree elevate 1

GISMO_DEBUG: Patch 0: control points       0     100       0
      0 83.3333       0
      0 66.6667       0
      0 33.3333       0
      0 16.6667       0
      0       0       0


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Q98:三角形网格细分Bezier曲面时,注意三角形顶点的顺序(确保其对应的法向量向外)

这一章节又是修正之前的错误。“Q97:怎么用三角形网格细分Bezier曲面——以Utah Teapot为例” (http://blog.csdn.net/libing_zeng/article/de...

Q79:怎么用三角形网格(Triangle Mesh)细分曲面

79.1 思路分析   我们先以球心在原点的单位球面为例来说明细分过程。 79.2 C++代码实现   79.2.1 tessellate_flat_...

Q100:怎么用三角形网格细分回旋体(rotational sweeping / revolution)

“回旋体”是指某“基本曲线”围绕某轴线旋转一周得到的曲面。我们这里考虑的“基本曲线”是由多段b-spline曲线拼接而成的曲线段;“轴线”是Y轴。(关于b-spline曲线,可以参考: http://...

MATLAB对三角网格进行线性细分

这是除去三角网格的LOOP细分外, Jesus Mena的另一篇代码,是对三角网格进行线性细分,先贴代码 function [newVertices, newFaces] = linearSubd...

Q80:平坦着色(Flat Shading)和平滑着色(Smooth Shading)——“Q79:怎么用三角形网格(Triangle Mesh)细分曲面”(补充)

80.1 概述   前面用三角形网格细分球面时,对单个三角形的着色方式采样的是“Flat Shading”。即: 通过三角形三顶点的坐标计算出整个三角形的法向量。 这样就导致相邻两个三角形的法向量...

Q97:怎么用三角形网格细分Bezier曲面——以Utah Teapot为例

我们知道Utah Teapot是由若干个Bicubic Bezier Patch拼接而成(我们这里用到的数据是32-patches、306-vertices版本)。 关于Bezier曲面的介绍,参考:...

[G+smo]C++开源矩阵计算工具——Eigen的简单用法

http://blog.csdn.net/houjixin/article/details/8490941 Eigen非常方便矩阵操作,当然它的功能不止如此,由于本人只用到了它的矩阵相关操作,所以...

[G+smo]Eigen常用函数以及注意事项总结

http://blog.sina.com.cn/s/blog_8171e92d0102vphr.html 一、初始化一个矩阵 定义一个固定大小矩阵: Matrix M; 例如: Matri...

Jquery控制点击时一、二级菜单自由隐藏与出现

Jquery控制网页一二级菜单在点击时级联显示。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)