递归的简单解释

原创 2004年07月17日 14:33:00

最简单的递归具有这样的形式

fn = a | fn

它的结果就是 a

计算过程如下,是一个数学归纳法.

递归次数) 表达式
1)        fn = a
2)        fn = fn = a
....
n)        fn = fn =...(n - 1 次)= fn = a

所以fn = a

写成C语言就是:
#define a          1

int fn(int n)
{
    if( n == 0) return a;
    return fn(n - 1)
}

n == 0 是递归终止条件, 当它一定能成立时, a 称为吸收子, fn 是递归过程.

当吸收子不含有递归过程(直接或间接)时称为 有限递归. 程序设计中的递归都必须是
有限递归.

不论递归过程如何定义,其关键都产生吸收子.整个递归的过程,实际上就是生成一个
参数数列A = { fn(n=1), fn(n = 2), .... fn(n=n-1)}.
其结果就是以吸收子和参数数列为自变量的一个函数: F(a, A).

上例中, fn(n) 的参数就是n, 参数数列就是A = { n, n - 1, n - 2, ..., 0}
函数F(x, y) = x.所以结果为0.

再举个例子:

void fn ( int n, int sum)
{
   if(n == 0) return;

   printf("n = %d, sum = %d", n, sum)
   fn(n - 1, sum + n);
   printf("n = %d, sum = %d", n, sum)
}

这个递归过程
A = {n, sum}, {n - 1, sum + n}, {n - 2, sum + n + n - 1}, ... { 0, sum + n*n - 1 - 2 ... - (n - 1)}
a = 空

F(x, y) = 空.

结果只是打印出了A数列

不过这个例子说明了一个问题, F(x,y)实际上作用了两次. 第一次以A顺序, 第二次以A的逆序.

第一次发生在生成A数列过程中,第二次发生在销毁A的过程中.
实际上它说明了递归的栈本质.

就是说所有的递归函数都可以改写成非递归的函数(使用栈).
如上题:

struct A
{
   int n;
   int sum;
};

#define N = 30; //最大栈深
void fn(int n, int sum)
{
   A stack[N];
   int i = n;

   stack[n].n = n;
   stack[n].sum = sum;
   printf("n = %d, sum = %d", stack[i].n, stack[i].sum);

   while(i)
   {
      stack[i - 1].sum = stack[i].sum + i;
      stack[i - 1].n = i;

      i--;
      printf("n = %d, sum = %d", stack[i].n, stack[i].sum);
   }

   while(i   {
      printf("n = %d, sum = %d", stack[i].n, stack[i].sum)
      i++;
   }
}
可以运行的程序见下:

#include <stdio.h>

void fn ( int n, int sum)
{
   if(n == 0) return;

   printf("before n = %d, sum = %d/n", n, sum);
   fn(n - 1, sum + n);
   printf("after n = %d, sum = %d/n", n, sum);
}

struct A
{
   int n;
   int sum;
};

#define N  30 //最大栈深

void fn2(int n, int sum)
{
   A stack[N];
   int i = n;

   stack[n].n = n;
   stack[n].sum = sum;

   while(i)
   {
      stack[i - 1].sum = stack[i].sum + i;
      stack[i - 1].n = i - 1;
      printf("before n = %d, sum = %d/n", stack[i].n, stack[i].sum);
      i--;
   }

   while(i<n)
   {
      i++;
      printf("after n = %d, sum = %d/n", stack[i].n, stack[i].sum);

   }
}

int main()
{
fn(5, 0);
fn2(5, 0);
}

递归(一)几个简单的递归例子

刚接触递归的同学,可能难以理解递归,难以理解的点可能很多,例如: 1.函数为什么可以在自己的内部又调用自己呢? 2.既然可以自己调用自己,那么递归运行过程中一定回有很多层相互嵌套,到底什么时候不再嵌套...
  • ten_sory
  • ten_sory
  • 2017年03月20日 16:15
  • 3007

简单递归入门题

帮助理解递归算法的一些入门级别题目合集
  • liujunyang0926
  • liujunyang0926
  • 2016年11月17日 20:50
  • 259

RNN循环神经网络的直观理解:基于TensorFlow的简单RNN例子

RNN递归神经网络的直观理解:基于TensorFlow的简单RNN例子RNN 直观理解 一个非常棒的RNN入门Anyone Can learn To Code LSTM-RNN in Python(P...
  • weiwei9363
  • weiwei9363
  • 2017年12月26日 15:08
  • 75

傻瓜式理解之一致哈希(仅供初学者理解)

傻瓜式理解之一致哈希(仅供初学者理解)最近在电商框架中接触到了REDIS,在讲解旧版本的REDIS利用一致哈希来分配存储数据到多个节点中,不过在新版本的REDIS中已经摒弃了一致哈希的原理,REDI采...
  • qq_33315966
  • qq_33315966
  • 2016年03月06日 21:17
  • 293

关于递归的简单使用

递归简单使用 使用的软件为 intellij ideapublic class Teacher { public static void main(String[] args) { ...
  • QLX119
  • QLX119
  • 2017年04月06日 18:25
  • 162

自编简单的shell命令解释器要求及代码

要求: 第0步:写一个最简单的shell命令解释器,本程序取自APUE例1-5,命令不能带参数。 学员需要完成的内容如下: 命令解释器首先是一个死循环。 打印一个命令提示符。 取得命令行...
  • jiary5201314
  • jiary5201314
  • 2013年05月11日 00:27
  • 744

深入理解递归

大家都知道,递归的本质和栈数据的存取很相似了,都是先进去,但是往往最后处理!再者对于递归函数的局部变量的存储是按照栈的方式去存的,对于每一层的递归函数在栈中都保存了本层函数的局部变量,一边该层递归函数...
  • hellobinfeng
  • hellobinfeng
  • 2013年03月14日 03:33
  • 6096

可以说是比较浅显易懂的区块链解释了

转自作者:汪乐-LaiW3n 链接:https://www.zhihu.com/question/37290469/answer/107612456 来源:知乎 著作权归作者所有。商业转载请联系作者获...
  • sinat_22209293
  • sinat_22209293
  • 2017年07月14日 08:54
  • 3521

数据库角色成员说明

各个角色是对应不同权限的,sql server中有很多权限,可以把这些权限组合或单独赋给各个角色,从而使不同角色的用户的权限不同,你列出的都是内置角色。你看看下面这些对你有没有帮助,希望你解决你的问题...
  • su_______mo
  • su_______mo
  • 2017年04月25日 17:48
  • 464

递归算法讲解

递归是设计和描述算法的一种有力的工具,由于它在复杂算法的描述中被经常采用,为此在进一步介绍其他算法设计方法之前先讨论它。     能采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它...
  • u011225629
  • u011225629
  • 2015年08月15日 14:31
  • 1965
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:递归的简单解释
举报原因:
原因补充:

(最多只允许输入30个字)