大数据必会指南

转载 2017年10月06日 21:17:27

总结如下:

必须技能10条:

01.Java高级(虚拟机、并发)
02.Linux 基本操作
03.Hadoop(此处为侠义概念单指HDFS+MapReduce+Yarn )
04.HBase(JavaAPI操作+Phoenix )
05.Hive(Hql基本操作和原理理解)
06.Kafka
07.Storm
08.Scala需要
09.Python
10.Spark (Core+sparksql+Spark streaming )
11.一些小工具(Sqoop等)

高阶技能6条:
11.机器学习算法以及mahout库加MLlib
12.R语言
13.Lambda 架构
14.Kappa架构
15.Kylin
16.Aluxio

三.学习路径

由于本人是从Java开发通过大概3个月的自学转到大数据开发的。所以我主要分享一下自己的学习路劲。

第一阶段:
01.Linux学习(跟鸟哥学就ok了)
02.Java 高级学习(《深入理解Java虚拟机》、《Java高并发实战》)

第二阶段:
03.Hadoop (董西成的书)
04.HBase(《HBase权威指南》)
05.Hive(《Hive开发指南》)
06.Scala(《快学Scala》)
07.Spark (《Spark 快速大数据分析》)
08.Python (跟着廖雪峰的博客学习就ok了)

第三阶段:
对应技能需求,到网上多搜集一些资料就ok了,我把最重要的事情(要学什么告诉你了),
剩下的就是你去搜集对应的资料学习就ok了

当然如果你觉得自己看书效率太慢,你可以网上搜集一些课程,跟着课程走也OK 。这个完全根据自己情况决定。如果看书效率不高就很网课,相反的话就自己看书。

四.学习资源推荐:

01.Apache 官网
02.Stackoverflow
04.github
03.Cloudra官网
04.Databrick官网
05.过往的记忆
06.CSDN,51CTO
07.至于书籍当当一搜会有很多,其实内容都差不多。

最后但却很重要一点:要多关注技术动向,持续学习。

相关文章推荐

移动开发必知必会的六大数据统计平台(入门篇)

数据统计对于各位移动开发的童鞋并不陌生,小到Bug统计,大到数据分析,一款性能稳定、用户体验良好的APP一定离不开数据统计的支持,为此我将给大家科普一下常用的六大数据统计平台。

跑会指南 | 2017上半年大数据相关会议盘点,总有一场你想参加

数据就是效益,数据就是资产,没有数据支撑的环境产业一定没有未来。环境数据的采集、运维和应用将会引领环境服务业的变形、重塑和商业模式的颠覆。谁拥有数据和数据应用能力,谁就可能登顶环境产业的“金字塔”尖。

《渗透测试实践指南 必知必会的工具与方法 (原书第2版)》读书摘录

----------------------------------------------------------------------------分割线---------------------...

《MongoDB大数据处理权威指南(第2版)》之MongoDB入门

想象一下这样的世界:数据库使用是如此的简单,以至于你忘记了正在使用它。再想象一下这样的世界:不需要任何复杂配置或设置,数据库仍然能够快速运行,并且具有良好的扩展性。想一下,如何可以只关注gg于手上的任...

大数据基础(一)openmpi,mpich,mpi4py在ubuntu 16.04下的安装指南

安装mpi4py的方法 直接pip install mpi4py不可取。 需要安装以下依赖包: https://bitbucket.org/mpi4py/mpi4py/src Dependenci...

大数据架构师指南.pdf

  • 2017-03-29 19:27
  • 27.84MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)