大数据毕业设计Python+Spark租房推荐系统 租房大数据 租房数据分析 租房可视化 租房爬虫 大数据毕设 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱

本文介绍了如何使用TensorFlow构建一个租房推荐算法模型,包括数据预处理、用户和物品嵌入、模型构建、训练及评估过程,以预测用户的租房评分。
部署运行你感兴趣的模型镜像

博主介绍:✌全网粉丝100W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌

🍅由于篇幅限制,想要获取完整文章或者源码,或者代做,可以给我留言或者找我聊天。🍅

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。

文章包含:项目选题 + 项目展示图片 (必看)

下面分享租房推荐算法的写法如下:

import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split

# 加载数据集
data = pd.read_csv('rental_data.csv')
X = data[['user_id', 'property_id']]
y = data['rating']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 建立用户嵌入矩阵
user_input = tf.keras.layers.Input(shape=(1,), name='user_input')
user_embedding = tf.keras.layers.Embedding(input_dim=max(X['user_id'])+1, output_dim=64)(user_input)
user_embedding = tf.keras.layers.Flatten()(user_embedding)

# 建立物品嵌入矩阵
property_input = tf.keras.layers.Input(shape=(1,), name='property_input')
property_embedding = tf.keras.layers.Embedding(input_dim=max(X['property_id'])+1, output_dim=64)(property_input)
property_embedding = tf.keras.layers.Flatten()(property_embedding)

# 合并用户和物品嵌入矩阵
merged = tf.keras.layers.Concatenate()([user_embedding, property_embedding])

# 构建模型
output = tf.keras.layers.Dense(1, activation='linear')(merged)
model = tf.keras.Model(inputs=[user_input, property_input], outputs=output)

# 编译模型
model.compile(loss='mse', optimizer='adam')

# 训练模型
model.fit([X_train['user_id'], X_train['property_id']], y_train, epochs=10, batch_size=32, verbose=1)

# 评估模型
test_loss = model.evaluate([X_test['user_id'], X_test['property_id']], y_test)
print('Test Loss:', test_loss)

 

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值