博主介绍:✌全网粉丝100W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌
🍅由于篇幅限制,想要获取完整文章或者源码,或者代做,可以给我留言或者找我聊天。🍅
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。
文章包含:项目选题 + 项目展示图片 (必看)












下面分享租房推荐算法的写法如下:
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('rental_data.csv')
X = data[['user_id', 'property_id']]
y = data['rating']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 建立用户嵌入矩阵
user_input = tf.keras.layers.Input(shape=(1,), name='user_input')
user_embedding = tf.keras.layers.Embedding(input_dim=max(X['user_id'])+1, output_dim=64)(user_input)
user_embedding = tf.keras.layers.Flatten()(user_embedding)
# 建立物品嵌入矩阵
property_input = tf.keras.layers.Input(shape=(1,), name='property_input')
property_embedding = tf.keras.layers.Embedding(input_dim=max(X['property_id'])+1, output_dim=64)(property_input)
property_embedding = tf.keras.layers.Flatten()(property_embedding)
# 合并用户和物品嵌入矩阵
merged = tf.keras.layers.Concatenate()([user_embedding, property_embedding])
# 构建模型
output = tf.keras.layers.Dense(1, activation='linear')(merged)
model = tf.keras.Model(inputs=[user_input, property_input], outputs=output)
# 编译模型
model.compile(loss='mse', optimizer='adam')
# 训练模型
model.fit([X_train['user_id'], X_train['property_id']], y_train, epochs=10, batch_size=32, verbose=1)
# 评估模型
test_loss = model.evaluate([X_test['user_id'], X_test['property_id']], y_test)
print('Test Loss:', test_loss)
本文介绍了如何使用TensorFlow构建一个租房推荐算法模型,包括数据预处理、用户和物品嵌入、模型构建、训练及评估过程,以预测用户的租房评分。

被折叠的 条评论
为什么被折叠?



