一棵树,每个节点有一个字符,然后你需要回答m个询问:以v为根的子树,且在原树中深度为h的所有节点上的所有字符,能否组成回文串。
太弱了,比赛时居然没想到,其实很简单。。直接把询问离线,按照dfs序求解即可。这里有一些技巧,比如,如果一个串是回文,它最多会有1个字符的个数是奇数,其他是偶数。所以我们可以把26个小写字母的奇偶性压成一个int来处理。
每次dfs到一个节点时,读取与该节点有关的所有询问,把之前得到的那些深度的答案暂存起来(因为不在当前子树),dfs完成一个节点后,用完成时的答案异或开始时的答案,就是这棵子树的答案。离线处理完后统一回答即可。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 5000010;
const int maxm = 5000010;
char letters[maxn];
int head[maxn];
int pre[maxn];
int to[maxn];
int tote;
int qhead[maxm];
int qpre[maxm];
struct Query{
int h;
int others; //保存不在当前子树的统计
int ans;
}query[maxm];
int totq;
bool judge(int x){
if(!x)return 1;
while(!(x&1)){
x>>=1;
}
x>>=1;
return !x;
}
int h[maxn];
void init(){
memset(head,-1,sizeof(head));
tote=0;
memset(qhead,-1,sizeof(qhead));
h[1]=1;
}
void addedge(int u,int v){
to[tote]=v;
pre[tote]=head[u];
head[u]=tote++;
}
void addquery(int v,int h,int id){
query[id].h=h;
qpre[id]=qhead[v];
qhead[v]=id++;
}
int n,m;
int cnt[maxn]; //统计每层各字符奇偶
void dfs(int u){
//处理与当前节点有关的询问
for(int i=qhead[u];i!=-1;i=qpre[i]){
//存储不在当前子树的统计
query[i].others = cnt[query[i].h];
}
cnt[h[u]]^=(1<<(letters[u]-'a'));
//dfs序遍历
for(int i=head[u];i!=-1;i=pre[i]){
int v = to[i];
h[v]=h[u]+1;
dfs(v);
}
for(int i=qhead[u];i!=-1;i=qpre[i]){
//得到答案
int tmp = query[i].others ^ cnt[query[i].h];
if(judge(tmp)){
query[i].ans=1;
}
}
}
int main(){
init();
cin>>n>>m;
for(int i=2;i<=n;i++){
int p;
scanf("%d",&p);
addedge(p,i);
}
scanf("%s",letters+1);
for(int i=1;i<=m;i++){
int v,h;
scanf("%d%d",&v,&h);
addquery(v,h,i);
}
dfs(1);
for(int i=1;i<=m;i++){
if(query[i].ans){
printf("Yes");
}else{
printf("No");
}
printf("\n");
}
return 0;
}