杭电OJ 1248 完全背包问题 及反思

原创 2016年06月01日 18:42:58



Problem Description
不死族的巫妖王发工资拉,死亡骑士拿到一张N元的钞票(记住,只有一张钞票),为了防止自己在战斗中频繁的死掉,他决定给自己买一些道具,于是他来到了地精商店前.

死亡骑士:"我要买道具!"

地精商人:"我们这里有三种道具,血瓶150块一个,魔法药200块一个,无敌药水350块一个."

死亡骑士:"好的,给我一个血瓶."

说完他掏出那张N元的大钞递给地精商人.

地精商人:"我忘了提醒你了,我们这里没有找客人钱的习惯的,多的钱我们都当小费收了的,嘿嘿."

死亡骑士:"......"

死亡骑士想,与其把钱当小费送个他还不如自己多买一点道具,反正以后都要买的,早点买了放在家里也好,但是要尽量少让他赚小费.

现在死亡骑士希望你能帮他计算一下,最少他要给地精商人多少小费.
 

Input
输入数据的第一行是一个整数T(1<=T<=100),代表测试数据的数量.然后是T行测试数据,每个测试数据只包含一个正整数N(1<=N<=10000),N代表死亡骑士手中钞票的面值.

注意:地精商店只有题中描述的三种道具.
 

Output
对于每组测试数据,请你输出死亡骑士最少要浪费多少钱给地精商人作为小费.
 

Sample Input
2 900 250
 

Sample Output
0 50



通过题意可以知道,本题是完全背包问题。

有关完全背包问题的一些基础知识如下

----------------------------------------------------------------------------------------------

问题描述:

N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路:

这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

一个简单有效的优化:

完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

这个优化可以简单的O(N^2)地实现,一般都可以承受。另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。这个不太重要的过程就不给出伪代码了,希望你能独立思考写出伪代码或程序。


转化为01背包:

       因为同种物品可以多次选取,那么第i种物品最多可以选取V/C[i]件价值不变的物品,然后就转化为01背包问题。整个过程的时间复杂度并未减少。如果把第i种物品拆成体积为C[i]×2k价值W[i]×2k的物品,其中满足C[i]×2k≤V。那么在求状态F[i][j]时复杂度就变为O(log2(V/C[i]))。整个时间复杂度就变为O(NVlog2(V/C[i]))

 

时间复杂度优化为O(NV)

将原始算法的DP思想转变一下。

设F[i][j]表示出在前i种物品中选取若干件物品放入容量为j的背包所得的最大价值。那么对于第i种物品的出现,我们对第i种物品放不放入背包进行决策。如果不放那么F[i][j]=F[i-1][j];如果确定放,背包中应该出现至少一件第i种物品,所以F[i][j]种至少应该出现一件第i种物品,即F[i][j]=F[i][j-C[i]]+W[i]。为什么会是F[i][j-C[i]]+W[i]?因为F[i][j-C[i]]里面可能有第i种物品,也可能没有第i种物品。我们要确保F[i][j]至少有一件第i件物品,所以要预留C[i]的空间来存放一件第i种物品。

状态方程为:

                           (2-2)

伪代码为:

[cpp] view plain copy
  1. F[0][] ← {0}  
  2.   
  3. F[][0] ← {0}  
  4.   
  5. for i←1 to N  
  6.   
  7.     do for j←1 to V  
  8.   
  9.         F[i][j] ← F[i-1][j]  
  10.   
  11.         if(j >= C[i])  
  12.   
  13.             then F[i][j] ← max(F[i][j],F[i][j-C[i]]+ W[i])  
  14.   
  15. return F[N][V]  

        具体背包中放入那些物品的求法和01背包情况差不多,从F[N][V]逆着走向F[0][0],设i=N,j=V,如果F[i][j]==F[i][j-C[i]]+W[i]说明包里面有第i件物品,同时j -= C[i]。完全背包问题在处理i自减和01背包不同,01背包是不管F[i][j]与F[i-1][j-C[i]]+W[i]相不相等i都要减1,因为01背包的第i件物品要么放要么不放,不管放还是不放其已经遍历过了,需要继续往下遍历而完全背包只有当F[i][j]与F[i-1][j]相等时i才自减1。因为F[i][j]=F[i-1][j]说明背包里面不会含有i,也就是说对于前i种物品容量为j的背包全部都放入前i-1种物品才能实现价值最大化,或者直白的理解为前i种物品中第i种物品物不美价不廉,直接被筛选掉。

最后抽象出处理一件完全背包类物品的过程伪代码,以后会用到:


1 void CompletePack(int cost, int weight)
2 {
3     for (int v = cost; v <= V; v++)
4         f[v] = max(f[v], f[v - cost] + weight);
5 }

以上转自:

http://www.cnblogs.com/sophist/articles/1545422.html


http://blog.csdn.net/wumuzi520/article/details/7014830


-------------------------------------------------------------------------------------------------------


除了解决本题的基本思路以外,我还遇到了一些问题

1.我是通过new来动态创建数组来存储背包空间的每一种情况的,所以在开辟空间的时候就想当然地写出

v=new int [n](其中v是背包空间数组,n是背包的容量,也就是钞票的面值)

但是我在遍历数组v的时候却是从0到n的(因为背包的空间大小本来就是从0到n的)

这就会造成数组的越界,在最后delete的时候爆出 CRT detected that the application````````的错误

所以开辟空间要比背包的大小大一


AC code


#include <iostream>
using namespace std;


int Max(int a,int b)
{
	return a>b?a:b;
}
int main()
{
	//freopen("D:\\input.txt","r",stdin);
	//freopen("D:\\output.txt","w",stdout);
	int cost[3]={150,200,350};
	int value[3]={150,200,350};
	int t;
	int * v;
	while(cin>>t)
	{
		while(t--)
		{
			int max=-1;
			int n;
			cin>>n;
			v=new int [n+1];				//加一!!
			if(n<150)
			{
				cout<<n<<endl;;
				continue;
			}
			memset(v,0,sizeof(v));
			for(int i=0;i<3;i++)
			{
				for(int k=0;k<=n;k++)		//长度是n+1!
				{
					if(k>=cost[i])
					{
						v[k]=Max(v[k],v[k-cost[i]]+value[i]);
					//	cout<<"v["<<k<<"]"<<v[k]<<endl;
						if(v[k]>max)
							max=v[k];
					}
				}
			}
			delete v;
			cout<<n-max<<endl;
		}
	}
}









杭电acm题目分类 非常详细

按此做成就大神之路:   1002 简单的大数 1003 DP经典问题,最大连续子段和 1004 简单题 1005 找规律(循环点) 1006 感觉有点BT的题,我到现在还没过 1007...
  • lsgqjh
  • lsgqjh
  • 2015年03月13日 17:49
  • 8912

hdoj 1248 完全背包问题

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1248 也是一道裸的完全背包。。 就是注意背包的容量以及花费都为同样的,我 写为 c 数组。 ...
  • liujc_
  • liujc_
  • 2015年03月01日 17:18
  • 482

赛马网ACM试题(原杭电oj ACM)java版答案(1000,10001,1002)

赛马网ACM试题(原杭电oj ACM试题)答案(java版) 杭电ACM:http://acm.hdu.edu.cn/ 赛码网:http://www.acmcoder.com/     屌丝程序...
  • zhanghailong000
  • zhanghailong000
  • 2015年09月17日 19:38
  • 2210

完全背包问题 动态规划

描述:现有n件物品,每件物品有无数个,每件物品有一个价值w和一个体积v,还有一个容量为tv的背包,现在要求使得在背包的容量之内使得价值最大。 分析: 我们从决策入手来解决这个问题,我们每一个决策就...
  • u013555159
  • u013555159
  • 2016年01月18日 22:33
  • 1093

杭电ACM题单整理

杭电acm题目分类版本1 1002 简单的大数 1003 DP经典问题,最大连续子段和 1004 简单题 1005 找规律(循环点) 1006 感觉有点BT的题,我到现在...
  • bat67
  • bat67
  • 2017年05月15日 21:53
  • 412

acm常用技巧四 超大背包问题

一.超大背包问题 pair ps[1
  • wcc526
  • wcc526
  • 2013年11月06日 13:49
  • 1612

杭电OJ题目 1000

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...
  • nxy006
  • nxy006
  • 2015年06月27日 20:49
  • 4352

完全背包问题 ------ java

完全背包问题
  • QwQ________
  • QwQ________
  • 2016年11月08日 00:38
  • 348

杭电OJ 2015

2016-10-22(已AC)#includeint main(void) { int n,m,j,k,a,a1; while(scanf("%d",&n)!=EOF) { ...
  • ZHangFFYY
  • ZHangFFYY
  • 2016年11月02日 13:50
  • 779

hdu 01 背包问题

悼念512汶川大地震遇难同胞——珍惜现在,感恩生活 Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Ja...
  • hpugym
  • hpugym
  • 2015年02月19日 15:06
  • 713
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:杭电OJ 1248 完全背包问题 及反思
举报原因:
原因补充:

(最多只允许输入30个字)