平均数不等式

原创 2013年12月04日 09:49:46

在看博客时不小心看到"平均不等式",顿时觉得数学的东西被我遗忘了好多委屈

平均不等式的大小顺序是:调和平均数<=几何平均数<=算术平均数<=平方平均数,即:

柯西-施瓦茨不等式的四种形式

柯西,施瓦茨不等式
  • qq_34562093
  • qq_34562093
  • 2017年10月14日 15:46
  • 538

微积分中几个重要的不等式:Jensen不等式、平均值不等式、Holder不等式、Schwarz不等式、Minkovski不等式 及其证明

1,**Jensen不等式**:![这里写图片描述](http://img.blog.csdn.net/20161012235155528)2,**平均值不等式**:3,**一个重要的不等式**:4,...
  • meilikafei
  • meilikafei
  • 2016年10月12日 23:57
  • 3477

线性代数(三十八) : 柯西-施瓦茨不等式与三角不等式

本节介绍欧几里得结构的两个基本不等式 1 柯西-施瓦茨(Cauchy–Schwarz)不等式 对任意向量x,y有: 证明: 观察实变量t的函数: 根据范数的定义,以及标量积的性质可知...
  • xxingjjing
  • xxingjjing
  • 2014年03月17日 16:20
  • 3406

无前缀码的Kraft不等式 一种理解

在阅读Gallager的数字通信原理过程中,遇到了信息论上十分熟悉的克拉夫特不等式,不等式内容大致如下:                        其中,Gallager给了我们一种非常好...
  • mike190267481
  • mike190267481
  • 2011年11月06日 22:56
  • 5346

霍夫丁不等式、马尔科夫不等式证明

马尔科夫不等式: http://blog.csdn.net/u010510549/article/details/47839241   霍夫丁不等式: http://blog.csdn.net...
  • hellochenlu
  • hellochenlu
  • 2017年10月08日 22:39
  • 473

【the EM algorithm】Jensen不等式

Jensen不等式
  • moqihao
  • moqihao
  • 2014年12月17日 10:01
  • 2603

Hoeffding不等式的证明

Hoeffding不等式证明
  • u010510549
  • u010510549
  • 2015年08月21日 19:34
  • 9571

[机器学习][2]--霍夫丁不等式

[机器学习][2]--霍夫丁不等式   这一章是为了说明机器学习的可行性的。为了解决一个问题,即我们找到了一个符合要求的函数f,这个函数在测试数据中准确率为90%,那么是否有该函数f在整体中的正确...
  • WMN7Q
  • WMN7Q
  • 2017年02月10日 11:27
  • 2586

信息论中的不等式

1. 凸函数定义 2. Jessen不等式 Ef(x)≥f(Ex)Ef(x) \ge f(Ex) 其中f(x)f(x)为凸函数。 将其中期望值E函数改为更容易理解的形式为: ∑ipif(xi...
  • tkyjqh
  • tkyjqh
  • 2017年02月15日 08:36
  • 357

马尔科夫不等式证明

示性函数 示性函数就是在某个集合上取1,其他地方取0的函数 一般都写个IA什么.A就是那个集合.例子.[0,1]上示性函数就是在[0,1]取1,其他取0.示性函数的期望就是这个集合的概率,即 E...
  • ation1122
  • ation1122
  • 2017年05月27日 22:26
  • 791
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:平均数不等式
举报原因:
原因补充:

(最多只允许输入30个字)