Floyd 算法思想和编写代码都比较简单,不重复,只是我在理解 Floyd 如何保存找到的各个点之间的最短路劲时候理解了较久时间,做个笔记。
Floyd 算法模板如下:
void floyd(int n, int **map, int **dis ){// n 为节点个数, **map 为 路径矩阵, dis[i][j] 表示为从 节点 i 到 节点 j 的最短距离
// 初始化 dis
for(int i = 1; i <=n ; i++){
for(int j=1; j <= n; j++){
if( map[i][j] == Max){
// path[i][j] = 0;//表示 i -> j 不通
}else{
// path[i][j] = i;// 表示 i -> j 前驱为 i
}
}
}
for(int k = 1; k <=n; k++){
for(int i = 1; i <=n; i++){
for(int j = 1; j <=n; j++){
if(dis[i][j] > dis[i][k] + dis[k][j]){
dis[i][j] = dis[i][k] + dis[k][j];
// path[i][k] = i;
// path[i][j] = path[k][j];
}
}
}
}
/* for(i = 1; i <=n ; i++){
for(int j=1; j <= n; j++){
cout<<dis[i][j]<<" ";
}
cout<<endl;
}*/
}
其中我们用 path 数组记录 经过路径 其实 path 的定义如下 path[i][j] = k 表示 是最短路径 i-……j 和 j 的直接 前驱 为 k 即是: i-->...............-->k ->j
举例子:
如 1-> 5->4 4->3->6 此时 path[1][6] = 0 ; 0表示 1->6 不通 当我们 引入 节点 k = 4 此时有 1->5->4->3->6 显然有 paht[1][6] = 3 = paht[4][6] = paht[k][6]
如是有 path[i][j] = path[k][j]
对于 1->5 相邻边 我们可以在初始化时候 有 paht[1][5] = 1;
如是对于 最短路径 1->5->4->3->6 有 paht[1][6] = 3; paht[1][3]= 4; paht[1][4] = 5; paht[1][5] =1 如此逆推不难得到 最短路径记录值 。