关闭

hdu 1394 Minimum Inversion Number(逆序数)

标签: 逆序数归并排序树状数组线段树C语言
180人阅读 评论(0) 收藏 举报
分类:

   Problem Description

The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 
Output
For each case, output the minimum inversion number on a single line.
 
Sample Input
10 1 3 6 9 0 8 5 7 4 2 
Sample Output
16
 

   做这道题之前首先了解一下什么是逆序数,当然,第一句题目已经介绍的很清楚了。在一个序列里找出一对数a,b,如果a>b且a在b的前面,那么(a,b)就为一个逆序对,这个序列中存在的逆序对的总个数称为逆序数。

而题目要求是:每次把第一个移到最后一个,求得一个逆序数。取所有可能的最小值作为输出。需要注意的是,只能输入n个数,且这n个数是0到n-1的不重复的数

Way1:归并排序法求逆序数,当找到一个数,求出它前面有多少个大于它的数,在排序的过程中就能计数,算是顺便学习了一下归并排序。
code:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define Min(a, b) (a)<(b)?(a):(b)
#define Max(a, b) (a)>(b)?(a):(b)
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1 //找到左儿子
#define rson m+1,r,rt<<1|1//找到右儿子
#define M 5005
#define LL long long
using namespace std;
int a[M],b[M],c[M],ans;
void Merge(int l,int m,int r)
{
    int i=l,j=m+1,k=l;
    while(i<=m&&j<=r) //如果左右子集都不为空
    {
        if(a[i]<=a[j])
            c[k++]=a[i++];
        else
        {
            ans+=m-i+1; //记录这一个数字前面有多少个比它大的数
            c[k++]=a[j++];
        }
    }
    while(i<=m)  c[k++]=a[i++]; //如果左子集不为空
    while(j<=r)    c[k++]=a[j++]; //如果右子集不为空
    for(int i=l;i<=r;i++) a[i]=c[i]; //转回到a[]
}
void Msort(int l,int r)
{
    if(l<r)
    {
        int m=(l+r)>>1;
        //先向下递归到最小子集为1然后往上面合并
        Msort(l,m);
        Msort(m+1,r);
        Merge(l,m,r);
    }
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
      for(int i=0;i<n;i++)
      {
          scanf("%d",&a[i]);
          b[i]=a[i];
      }
      ans=0;
      Msort(0,n-1);
//       for(int i=0;i<n;i++)
//       printf("%d",a[i]);
      int ret=ans;
      for(int i=0;i<n;i++)
      {//用递推推出所有的结果
          ans+=n-b[i]-b[i]-1;
          ret=Min(ret,ans);
      }
      printf("%d\n",ret);
    }
}

Way2:线段树,其实思想是一样的,只要先求出初始时序列的逆序数,然后就可以通过递推求出所有的,用线段树做可以把线段树当做一个计数的功能。当0到n-1中的某个数出现了,就在那个位置标志为1。当再次输入一个数k的时候,观察前面输入的数中有多少个比它的大,即求解区间(k,n-1]的和即可
code:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define Min(a, b) (a)<(b)?(a):(b)
#define Max(a, b) (a)>(b)?(a):(b)
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1 //找到左儿子
#define rson m+1,r,rt<<1|1//找到右儿子
#define M 5005
#define LL long long
using namespace std;
int sum[M<<2];
int a[M];
inline void pushrt(int rt)
{
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
    sum[rt]=0; //赋初值
    if(l==r)
        return ;
    int m=(l+r)>>1;
    build(lson);
    build(rson);
}
void update(int p,int l,int r,int rt)
{
    if(l==r)
    {
        sum[rt]=1; //把p点标记为1表示p已经出现过
        return ;
    }
    int m=(l+r)>>1;
    if(p<=m) update(p,lson);
    else update(p,rson);
    pushrt(rt);
}
int query(int L,int R,int l,int r,int rt)
{
    while(L<=l&&r<=R)
    {
        return sum[rt];
    }
    int ret=0;
    int m=(l+r)>>1;
    if(L<=m) ret+=query(L,R,lson);
    if(R>m) ret+=query(L,R,rson);
    return ret;
}
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        build(0,n-1,1);
        int sum=0;
        for(int i=0; i<n; i++)
        {
            scanf("%d",&a[i]);
            sum+=query(a[i],n-1,0,n-1,1); //求比a[i]大的数有多少个
            update(a[i],0,n-1,1);
        }
        int ret=sum;
        for(int i=0;i<n;i++)
        {
            sum+=n-a[i]-a[i]-1;
            ret=Min(ret,sum);
        }
        printf("%d\n",ret);
    }
    return 0;
}


Way3:树状数组,思路和线段树一模一样,只是需要注意到树状数组不能访问到下标0(lowbit(0)=0),处理办法是先把数组中的所有的数加1.
code:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define Min(a, b) (a)<(b)?(a):(b)
#define Max(a, b) (a)>(b)?(a):(b)
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1 //找到左儿子
#define rson m+1,r,rt<<1|1//找到右儿子
#define M 5005
#define LL long long
using namespace std;
int n,a[M],num[M];
int lowbit(int x)
{
    return -x&x;
}
void update(int p,int q)
{
    while(p<=n)
    {
        num[p]+=q;
        p+=lowbit(p);
    }
}
int query(int p)
{
    int ans=0;
    while(p>0)
    {
        ans+=num[p];
        p-=lowbit(p);
    }
    return ans;
}
int main()
{
    while(~scanf("%d",&n))
    {
        memset(num,0,sizeof(num));
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            ans+=query(n)-query(a[i]+1);
            update(a[i]+1,1);
        }
        int ret=ans;
        for(int i=1;i<=n;i++)
        {
            ans+=n-a[i]-a[i]-1;
            ret=Min(ans,ret);
        }
        printf("%d\n",ret);
    }
    return 0;
}


另外:发现暴力也能过,顿时令纠结了很久的我汗颜,,不过掌握了这几种方法感觉也挺好的。
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:14476次
    • 积分:566
    • 等级:
    • 排名:千里之外
    • 原创:43篇
    • 转载:0篇
    • 译文:0篇
    • 评论:2条
    最新评论