# hdu 1394 Minimum Inversion Number（逆序数）

180人阅读 评论(0)

Problem Description

The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.

Output
For each case, output the minimum inversion number on a single line.

Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16

做这道题之前首先了解一下什么是逆序数，当然，第一句题目已经介绍的很清楚了。在一个序列里找出一对数a，b，如果a>b且a在b的前面，那么（a,b）就为一个逆序对，这个序列中存在的逆序对的总个数称为逆序数。

Way1：归并排序法求逆序数，当找到一个数，求出它前面有多少个大于它的数，在排序的过程中就能计数，算是顺便学习了一下归并排序。
code：
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define Min(a, b) (a)<(b)?(a):(b)
#define Max(a, b) (a)>(b)?(a):(b)
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1 //找到左儿子
#define rson m+1,r,rt<<1|1//找到右儿子
#define M 5005
#define LL long long
using namespace std;
int a[M],b[M],c[M],ans;
void Merge(int l,int m,int r)
{
int i=l,j=m+1,k=l;
while(i<=m&&j<=r) //如果左右子集都不为空
{
if(a[i]<=a[j])
c[k++]=a[i++];
else
{
ans+=m-i+1; //记录这一个数字前面有多少个比它大的数
c[k++]=a[j++];
}
}
while(i<=m)  c[k++]=a[i++]; //如果左子集不为空
while(j<=r)    c[k++]=a[j++]; //如果右子集不为空
for(int i=l;i<=r;i++) a[i]=c[i]; //转回到a[]
}
void Msort(int l,int r)
{
if(l<r)
{
int m=(l+r)>>1;
//先向下递归到最小子集为1然后往上面合并
Msort(l,m);
Msort(m+1,r);
Merge(l,m,r);
}
}
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
ans=0;
Msort(0,n-1);
//       for(int i=0;i<n;i++)
//       printf("%d",a[i]);
int ret=ans;
for(int i=0;i<n;i++)
{//用递推推出所有的结果
ans+=n-b[i]-b[i]-1;
ret=Min(ret,ans);
}
printf("%d\n",ret);
}
}

Way2：线段树，其实思想是一样的，只要先求出初始时序列的逆序数，然后就可以通过递推求出所有的，用线段树做可以把线段树当做一个计数的功能。当0到n-1中的某个数出现了，就在那个位置标志为1。当再次输入一个数k的时候，观察前面输入的数中有多少个比它的大，即求解区间（k，n-1]的和即可
code：
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define Min(a, b) (a)<(b)?(a):(b)
#define Max(a, b) (a)>(b)?(a):(b)
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1 //找到左儿子
#define rson m+1,r,rt<<1|1//找到右儿子
#define M 5005
#define LL long long
using namespace std;
int sum[M<<2];
int a[M];
inline void pushrt(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
sum[rt]=0; //赋初值
if(l==r)
return ;
int m=(l+r)>>1;
build(lson);
build(rson);
}
void update(int p,int l,int r,int rt)
{
if(l==r)
{
sum[rt]=1; //把p点标记为1表示p已经出现过
return ;
}
int m=(l+r)>>1;
if(p<=m) update(p,lson);
else update(p,rson);
pushrt(rt);
}
int query(int L,int R,int l,int r,int rt)
{
while(L<=l&&r<=R)
{
return sum[rt];
}
int ret=0;
int m=(l+r)>>1;
if(L<=m) ret+=query(L,R,lson);
if(R>m) ret+=query(L,R,rson);
return ret;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
build(0,n-1,1);
int sum=0;
for(int i=0; i<n; i++)
{
scanf("%d",&a[i]);
sum+=query(a[i],n-1,0,n-1,1); //求比a[i]大的数有多少个
update(a[i],0,n-1,1);
}
int ret=sum;
for(int i=0;i<n;i++)
{
sum+=n-a[i]-a[i]-1;
ret=Min(ret,sum);
}
printf("%d\n",ret);
}
return 0;
}

Way3：树状数组,思路和线段树一模一样，只是需要注意到树状数组不能访问到下标0（lowbit(0)=0）,处理办法是先把数组中的所有的数加1.
code：
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<stack>
#include<queue>
#include<map>
#define Min(a, b) (a)<(b)?(a):(b)
#define Max(a, b) (a)>(b)?(a):(b)
#define inf 0x3f3f3f3f
#define lson l,m,rt<<1 //找到左儿子
#define rson m+1,r,rt<<1|1//找到右儿子
#define M 5005
#define LL long long
using namespace std;
int n,a[M],num[M];
int lowbit(int x)
{
return -x&x;
}
void update(int p,int q)
{
while(p<=n)
{
num[p]+=q;
p+=lowbit(p);
}
}
int query(int p)
{
int ans=0;
while(p>0)
{
ans+=num[p];
p-=lowbit(p);
}
return ans;
}
int main()
{
while(~scanf("%d",&n))
{
memset(num,0,sizeof(num));
int ans=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
ans+=query(n)-query(a[i]+1);
update(a[i]+1,1);
}
int ret=ans;
for(int i=1;i<=n;i++)
{
ans+=n-a[i]-a[i]-1;
ret=Min(ans,ret);
}
printf("%d\n",ret);
}
return 0;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：14476次
• 积分：566
• 等级：
• 排名：千里之外
• 原创：43篇
• 转载：0篇
• 译文：0篇
• 评论：2条
评论排行
最新评论