字符识别算法SWT实现中的一些经验总结

原创 2016年08月31日 15:03:18

自然场景中的文字识别,不得不提SWT算法【 Boris Epshtein , etc. Detecting Text in Natural Scenes with Stroke Width Transform. CVPR, 2010】,

该算法主要思想是通过canny提取边缘和梯度,然后通过梯度方向去搜索相反方向的边缘,搜索过程中的记录的路径长度就是该路径上所有像素对应的笔画宽度

在实现该算法过程中发现在计算中文字符过程中会有很多细节上的问题出现:

1.就是即使在边缘都被准确提取到的情况下,在查找边缘计算像素宽度仍然有问题,

如下图所示,在逐个像素点计算时,会出现跳过边缘点的情况,导致搜索路径长于实际值

       

2.文章中给定的pi/6阈值来确定搜索方向的一个评估范围对于中文字符来讲,太严苛,造成很多边缘方向定位越界,因为中文字符的笔画远比英文字符复杂的

结合上面2点,中文字符,比较适合从上下左右方向去搜索边缘,确定像素宽度,以最小值作为宽度值

后续有更新在补充

相关文章推荐

字符识别OCR研究三 字符识别,字符区域定位 经验总结:

字符识别经验总结: 一、      视频帧中字符的识别(video ocr): 难点1:视频流中,出现字符后,立即开始采集含有字符的视频帧; 难点2:对视频帧中字符区域的定位; 难点3:快速有效的识别...

OpenCV手写数字字符识别(基于k近邻算法)

摘要 本程序主要参照论文,《基于OpenCV的脱机手写字符识别技术》实现了,对于手写阿拉伯数字的识别工作。识别工作分为三大步骤:预处理,特征提取,分类识别。预处理过程主要找到图像的ROI部分子图像并进...

脱机字符识别算法源代码

  • 2010年05月23日 20:34
  • 198KB
  • 下载

基于Shape Context的字符识别算法介绍

SC算法广泛的应用于图像识别领域,其优点在于: 第一,  提取的特征点集为轮廓点集,点集性质好,改进余地大。 第二,  使用全局信息描述特征点,抗干扰性极强。 但是其缺点在于:由于使...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:字符识别算法SWT实现中的一些经验总结
举报原因:
原因补充:

(最多只允许输入30个字)