Github Learing Note

原创 2015年11月18日 21:18:05

Github Learning Note



创建版本库

  • 初始化一个Git仓库,使用git init命令。

  • 添加文件到Git仓库,分两步:

    第一步,使用命令git add <file>,注意,可反复多次使用,添加多个文件;
    
    第二步,使用命令git commit,完成。
    

穿梭时光机

  • 要随时掌握工作区的状态,使用git status命令。

  • 如果git status告诉你有文件被修改过,用git diff可以查看修改内容。

版本回退

  • HEAD指向的版本就是当前版本,因此,Git允许我们在版本的历史之间穿梭,使用命令git reset –hard commit_id。

  • 穿梭前,用git log可以查看提交历史,以便确定要回退到哪个版本。

  • 要重返未来,用git reflog查看命令历史,以便确定要回到未来的哪个版本。

工作区和暂存区

管理修改

  • 现在,你又理解了Git是如何跟踪修改的,每次修改,如果不add到暂存区,那就不会加入到commit中。

撤销修改

  • 场景1:当你改乱了工作区某个文件的内容,想直接丢弃工作区的修改时,用命令git checkout - - file。

  • 场景2:当你不但改乱了工作区某个文件的内容,还添加到了暂存区时,想丢弃修改,分两步,第一步用命令git reset HEAD file,就回到了场景1,第二步按场景1操作。

  • 场景3:已经提交了不合适的修改到版本库时,想要撤销本次提交,参考版本回退一节,不过前提是没有推送到远程库。

删除文件

  • 命令git rm用于删除一个文件。如果一个文件已经被提交到版本库,那么你永远不用担心误删,但是要小心,你只能恢复文件到最新版本,你会丢失最近一次提交后你修改的内容。

远程仓库

添加远程库

  • 要关联一个远程库,使用命令git remote add origin git@server-name:path/repo-name.git;

  • 关联后,使用命令git push -u origin master第一次推送master分支的所有内容;
    此后,每次本地提交后,只要有必要,就可以使用命令git push origin master推送最新修改;

  • 分布式版本系统的最大好处之一是在本地工作完全不需要考虑远程库的存在,也就是有没有联网都可以正常工作,而SVN在没有联网的时候是拒绝干活的!当有网络的时候,再把本地提交推送一下就完成了同步,真是太方便了!

从远程库克隆

  • 要克隆一个仓库,首先必须知道仓库的地址,然后使用git clone命令克隆。
    Git支持多种协议,包括https,但通过ssh支持的原生git协议速度最快。

分支管理

创建与合并分支

Git鼓励大量使用分支:

  • 查看分支:git branch

  • 创建分支:git branch

  • 切换分支:git checkout

  • 创建+切换分支:git checkout -b

  • 合并某分支到当前分支:git merge

  • 删除分支:git branch -d

解决冲突

  • 当Git无法自动合并分支时,就必须首先解决冲突。解决冲突后,再提交,合并完成。

  • 用git log –graph命令可以看到分支合并图。

分支管理策略

  • 合并分支时,加上–no-ff参数就可以用普通模式合并,合并后的历史有分支,能看出来曾经做过合并,而fast forward合并就看不出来曾经做过合并。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Machine Learing in Action - kNN

kNN算法核心代码''' kNN分类器,处理数据为向量 inX: 任意N维向量 dataSet: 学习数据集为m个N维向量 labels: 数据集的类别 k: kNN算法中的参数k,k必须为奇数,以避...

Machine Learing in Action - 贝叶斯分类器

机器学习两种策略判别式模型给定样本x,可通过直接建模P(c|x)P(c|x)来预测c,如决策树,BP神经网络,支持向量机生成式模型先对联合概率分布P(x,c)P(x,c)建模,再由此获得P(c|x)P...

Makefile Learing (下)

Makefile Learing  (下)     Part 10   make的运行   1.make退出码 2.指定Makefile   命令: make  -f ...

reinforcement learing for visual object detection - 阅读笔记

2016CVPR的文章,从结构上来看和一般的强化学习 似乎有一些不一样。在给定一张图像的情况下(目标区域蕴含在当前图像中)我们需要从图像的子区块中找到和目标区块最接近的子区块。图像的子区块可以使用简单...

Learing OpenCV cvThreshold

阈值处理: 一、函数定义:

Machine Learing导读。

研究机器学习也有一段时间了,虽然算不上什么

【python learing】玩玩pythonanywhere

pythonanywhere是一个面向python开发的云平台 它为初学者提供了一个基本的空间,mysql数据库,一个二级域名,以及相关教程。。 来看看怎样在 pythonanywhere 创建一...

adaboost learing

最近在看adaboost,有个ppt讲的不错,将其中重要内容整理一下: 1984年 Valiant提出PAC(Probably Approximately Correct)学习模型,文中提出强学习...

8-Advice for Applying Machine Learing

如何选择机器学习算法、系统1 - Deciding What to Try Next 在模型遇到问题时该怎么办当你用regularized linear regression 实现了housing p...

Learing OpenCV---鼠标响应

OpenCV中鼠标事件的响应是采用回调函数的方式来处理。即为了响应鼠标点击事件,必须首先创建一个鼠标回调函数,使鼠标点击事件发生时OpenCV可以调用该函数。创建这个函数后,需要在OpenCV中注册这...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)