caffe 准确率一直震荡,从0到0.6反复

原创 2016年08月29日 12:30:15

可能原因:

猜测版,未经证实,如有虚言,不要怪我……

一、学习率太大,一般说法,但是通过lr policy调试学习次数很多之后应该不会出现这种情况吧

二、solver里的test interval* train batch size 应该>=train image 总数,保证全部图片循环一轮之后再测试。之前我就是test interval设的太小了,导致accuracy一直震荡……

        另外提醒:solver里的test iter * test batch size应该>=test image 总数

        都是血的教训

三、之前在网上找了一个vgg16的网络,开始训练自己的数据,但是准确率一直在0.3上不去,我怀疑数据有问题,怀疑label错了,怀疑写label的txt文本的时候到底应该用\r换行还是\r\n换行,怀疑数据应该用三通道还是灰度……最后换了个网络,一下到了0.6……原来是网络的初始化没有弄好,不会初始化可以去网上下载已经初始化好的网络。

总之在我目前水平使用caffe,全凭运气……

相关文章推荐

deep learning实践经验总结2--准确率再次提升,到达0.8,再来总结一下

deep learning实践经验总结 最近拿caffe来做图片分类,遇到不少问题,同时也吸取不少教训和获得不少经验。...

caffe参数理解

solver.prototxt net: "vggface_mycmd/vggface_train_test.prototxt" test_iter: 365 test_interval: ...

win7+cuda7.5+caffe配置及实例演示及训练自己的图片

因为要用OpenCV3.1的dnn 它训练部分要用到caffe 所以简单用一下 http://blog.csdn.net/ycheng_sjtu/article/details/39693655?ut...

1、为什么caffe训练时训练集loss=0.06,验证集accuracy=0.98但测试集的准确率很低accuracy=0.67

1、https://groups.google.com/forum/#!topic/caffe-users/NzKEWAFPPfI 提出新的测试方法 2、https://github.com/pher...

caffe训练测试自己的数据集

http://blog.csdn.net/sloanqin/article/details/49152351 http://blog.csdn.net/liumaolincycle/article/...

解决Caffe训练过程中loss不变问题

caffe中loss保持87.33和0.69的解决办法

caffe刚开始训练准确率很高,经过几次训练就达到饱和的原因

以我为例,我的分类任务只有2类,标类标的时候是从1开始,类标号是1,2。这样训练时,准确率很快就达到了饱和(其他操作都正确)。后来把类标2改为0之后,也就是说类标号从0开始的,然后再去训练网络,准确率...
  • w113691
  • w113691
  • 2017年06月04日 22:25
  • 299

Caffe训练网络时的点点滴滴

以前主要是微调网络,所以参数的设计非常简单,我们只需要注意转换数据时把参数--shuffle=true,loss收敛就不会有什么问题。但是最近我重新训练网络,发现参数调试真的是一个麻烦的事情。在这里总...

Loss和神经网络训练

出处:http://blog.csdn.net/han_xiaoyang/article/details/50521064  声明:版权所有,转载请联系作者并注明出处 1.训练 在前一节...

caffe学习小问题(1):caffe中的Accuracy

今天才偶然发现,caffe在计算Accuravy时,利用的是最后一个全链接层的输出(不带有acitvation function),比如:alexnet的train_val.prototxt、caff...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:caffe 准确率一直震荡,从0到0.6反复
举报原因:
原因补充:

(最多只允许输入30个字)