LeetCode Minimum Path Sum

原创 2015年11月18日 09:04:43

题目:

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

题意:

给定一个m行n列的二维数组,这二维数组中的值都是非负,找一条从左上角开始到右下角的所有格子和最小的路径。注意:你每次都只能要么向右走要么向下走一步。

题解:

这道题目是很典型的二维的动态规划的题目,看到此题,就应该想到动态规划。LZ此前在一篇博客中看到类似的题型,不过那个是计算最大值,也差不多,换汤不换药的东西。首先就是要找状态,我们注意到一点,到达一个格子的方式最多两种,从左边来(除了第一列)和从上边来(除了第一行),因此为了求出到达当前格子后最少能收集到的和,我们就要去考察那些能够达到当前这个格子的格子,所以状态转移方程也自然有了:

s[i][j] = a[i][j] + min(s[i-1][j],if i > 0;s[i][j-1],if j > 0) ,但是这里要注意的是针对s[0][0]的那一个格子,因为是从一行和一列开始的,所以当遇到s[0][0]的时候,我是直接将其赋为nums[0][0]的那个值,另外当遇到的是第一行和第一列的时候,因为没有s[i-1][j]和s[i][j-1],所以我在设置这些格子的时候采用Integer.MAX_VALUE,这个最大值来做,这样就可以比较最小的那个了。

public class NumArray 
{
	public static int minPathSum(int[][] nums)
	{
		int n = nums.length;
		int m = nums[0].length;
		//System.out.println(m);
		int[][] S = new int[n][m];
		for(int i = 0; i < n; i++)
		{
			for(int j = 0; j < m; j++)
			{
				int increment = nums[i][j];
				//System.out.print(increment + "  ");
				int left = 0,up = 0;
				if(i == 0 && j == 0)
					S[i][j] =increment;
				else
				{
					if(i > 0)
						up = S[i-1][j];
					else 
						up = Integer.MAX_VALUE;
					if(j > 0)
						left = S[i][j - 1];
					else 
						left = Integer.MAX_VALUE;
					int neighbor = 0;
					if(up <= left)
					   neighbor = up;
					else 
					   neighbor = left;
					S[i][j] = neighbor + increment;
				}
			}
		}
		int result = S[n-1][m-1];
		return result;
	}
	public static void main(String[] args)
	{
		int[][] nums = new int[][]{{1,2},{1,1}};
		System.out.println(minPathSum(nums));
	}
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

LeetCode—Minimum Path Sum 二维数组最小路径,动态规划

感觉这是一系列的动态规划的算法,正好也将动态规划的算法进行一个总结: 算法一: 带权重的最小路径的问题 Given a m x n grid filled with non-negative...

【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】

【064-Minimum Path Sum(最小路径和)】【LeetCode-面试算法经典-Java实现】【所有题目目录索引】原题  Given a m x n grid filled with no...

【leetcode】64. Minimum Path Sum

【leetcode】64. Minimum Path Sum

leetcode - 62,63. Unique Paths(II) & 64.Minimum Path Sum

算法系列博客之Dynamic Programming 本篇博客将运用动态规划的思想来解决leetcode上264号问题这三个题目的共同之处在于均是二维矩阵上的规划问题问题描述:62 Unique Pa...
  • Quiteen
  • Quiteen
  • 2017年06月11日 20:40
  • 124

LeetCode 64 Minimum Path Sum--In C++

思路: 用动态规划的话,速度是最快的。 状态迁移方程:mat[i][j] = (mat[i][j + 1] 即要找到一个格子的下边和右边较小的值,在加上grid中给他的值,作为mat中这个位置的...

leetcode解题之62&63. Unique Paths ||64. Minimum Path Sum java版(路径(最短)可达)

leetcode解题之62&63. Unique Paths || java版(路径可达) ,63. Unique Paths II ,62. Unique Paths 。64. Minimum Pa...

leetcode 64. Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which...

[LeetCode][Java] Minimum Path Sum

题目: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom ri...

LeetCode 64 — Minimum Path Sum(C++ Java Python)

题目:http://oj.leetcode.com/problems/minimum-path-sum/ Given a m x n grid filled with non-negative num...

[leetcode] 64. Minimum Path Sum Add to List

64. Minimum Path Sum Add to ListGiven a m x n grid filled with non-negative numbers, find a path fro...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LeetCode Minimum Path Sum
举报原因:
原因补充:

(最多只允许输入30个字)