Lucene

转载 2011年01月13日 00:12:00

Lucene是一个高性能的java全文检索工具包,它使用的是倒排文件索引结构。该结构及相应的生成算法如下: 0)设有两篇文章1和2 文章1的内容为:Tom lives in Guangzhou,I live in Guangzhou too. 文章2的内容为:He once lived in Shanghai. 1)由于lucene是基于关键词索引和查询的,首先我们要取得这两篇文章的关键词,通常我们需要如下处理措施 a.我们现在有的是文章内容,即一个字符串,我们先要找出字符串中的所有单词,即分词。英文单词由于用空格分隔,比较好处理。中文单词间是连在一起的需要特殊的分词处理。 b.文章中的”in”, “once” “too”等词没有什么实际意义,中文中的“的”“是”等字通常也无具体含义,这些不代表概念的词可以过滤掉 c.用户通常希望查“He”时能把含“he”,“HE”的文章也找出来,所以所有单词需要统一大小写。 d.用户通常希望查“live”时能把含“lives”,“lived”的文章也找出来,所以需要把“lives”,“lived”还原成“live” e.文章中的标点符号通常不表示某种概念,也可以过滤掉 在lucene中以上措施由Analyzer类完成 经过上面处理后 文章1的所有关键词为:[tom] [live] [guangzhou] [i] [live] [guangzhou] 文章2的所有关键词为:[he] [live] [shanghai] 2) 有了关键词后,我们就可以建立倒排索引了。上面的对应关系是:“文章号”对“文章中所有关键词”。倒排索引把这个关系倒过来,变成:“关键词”对“拥有该关键词的所有文章号”。文章1,2经过倒排后变成 关键词 文章号 guangzhou 1 he 2 i 1 live 1,2 shanghai 2 tom 1 通常仅知道关键词在哪些文章中出现还不够,我们还需要知道关键词在文章中出现次数和出现的位置,通常有两种位置:a)字符位置,即记录该词是文章中第几个字符(优点是关键词亮显时定位快);b)关键词位置,即记录该词是文章中第几个关键词(优点是节约索引空间、词组(phase)查询快),lucene中记录的就是这种位置。 加上“出现频率”和“出现位置”信息后,我们的索引结构变为: 关键词 文章号[出现频率] 出现位置 guangzhou 1[2] 3,6 he 2[1] 1 i 1[1] 4 live 1[2],2[1] 2,5,2 shanghai 2[1] 3 tom 1[1] 1 以live 这行为例我们说明一下该结构:live在文章1中出现了2次,文章2中出现了一次,它的出现位置为“2,5,2”这表示什么呢?我们需要结合文章号和出现频率来分析,文章1中出现了2次,那么“2,5”就表示live在文章1中出现的两个位置,文章2中出现了一次,剩下的“2”就表示live是文章2中第 2个关键字。 以上就是lucene索引结构中最核心的部分。我们注意到关键字是按字符顺序排列的(lucene没有使用B树结构),因此lucene可以用二元搜索算法快速定位关键词。 实现时 lucene将上面三列分别作为词典文件(Term Dictionary)、频率文件(frequencies)、位置文件 (positions)保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息。 Lucene中使用了field的概念,用于表达信息所在位置(如标题中,文章中,url中),在建索引中,该field信息也记录在词典文件中,每个关键词都有一个field信息(因为每个关键字一定属于一个或多个field)。 为了减小索引文件的大小,Lucene对索引还使用了压缩技术。首先,对词典文件中的关键词进行了压缩,关键词压缩为<前缀长度,后缀>,例如:当前词为“阿拉伯语”,上一个词为“阿拉伯”,那么“阿拉伯语”压缩为<3,语>。其次大量用到的是对数字的压缩,数字只保存与上一个值的差值(这样可以减小数字的长度,进而减少保存该数字需要的字节数)。例如当前文章号是16389(不压缩要用3个字节保存),上一文章号是16382,压缩后保存7(只用一个字节)。 下面我们可以通过对该索引的查询来解释一下为什么要建立索引。 假设要查询单词 “live”,lucene先对词典二元查找、找到该词,通过指向频率文件的指针读出所有文章号,然后返回结果。词典通常非常小,因而,整个过程的时间是毫秒级的。 而用普通的顺序匹配算法,不建索引,而是对所有文章的内容进行字符串匹配,这个过程将会相当缓慢,当文章数目很大时,时间往往是无法忍受的。

不选择使用Lucene的6大原因

不选择使用Lucene的6大原因     Lucene是开放源代码的全文搜索引擎工具包,凭借着其强劲的搜索功能和简单易用的实现,在国内已经很普及,甚至一度出现了言搜索必称Lucene的盛景。上个月Lu...
  • accesine960
  • accesine960
  • 2008年03月22日 23:05
  • 14556

基于lucene的案例开发:实时索引的修改

实时索引中的IndexWriter的操作都是委托给TrackingIndexWriter来操作,这里就对实时索引中的增删改操作进行进一步的封装,实现实时索引的基本操作...
  • xiaojimanman
  • xiaojimanman
  • 2015年03月15日 20:52
  • 2950

利用Lucene将大文档切割成多个小文档,(可运行)

搜索引擎
  • u012965373
  • u012965373
  • 2015年03月15日 13:59
  • 784

小议lucene搜索表达式中的AND和OR以及+和空格

在构造搜索表达式的时候你可以使用+(与AND相当,当不完全相同) 和空格(与OR相当),也可以使用AND和OR,当然也可以都混在一起,个人感觉最好不要构造复杂的表达式的时候千万要注意,特别是使用AND...
  • pwlazy
  • pwlazy
  • 2007年03月15日 14:25
  • 5349

Lucene底层原理和优化经验分享(2)-Lucene优化经验总结

系统优化遵从木桶原理:一只木桶能盛多少水,并不取决于最高的木板,而取决于最短的那块木板。Lucene优化也一样,找到性能瓶颈,找对解决方法,才能事半功倍,本文将从三方面阐述我们的Lucene优化经验:...
  • njpjsoftdev
  • njpjsoftdev
  • 2017年01月06日 09:21
  • 4133

lucene系列-facet搜索

facet搜索,方面搜索,电商中使用的非常多.例如 统计field中值的分组分布情况, 只是每个域值中的命中数量.facet搜索主要用于:1.Facet Counting facet域值统计 ...
  • madman188
  • madman188
  • 2015年11月16日 17:06
  • 966

为什么要学习Lucene

现在Lucene在互联网行业的用的非常广泛,尤其是大数据时代的今天,那么根据自己的理解给大家简单的介绍一下为什么要学习Lucene。 1.对比一下Lucene的检索方式相比以前的检索方式有哪些优点 ...
  • qq_19642249
  • qq_19642249
  • 2016年12月29日 15:51
  • 760

Lucene在Linux下环境的搭建和运行

1.     介绍 Lucene是一个用Java写的全文索引引擎工具包,软件包中包括一些简单的例程,可以直接试用。本例将测试对一个目录中的txt文件进行索引,并通过索引找到相应的文件。 2.   ...
  • xieyan0811
  • xieyan0811
  • 2012年03月23日 13:51
  • 5612

lucene学习三:lucene检索得分

检索的得分相当重要,这关乎你的搜索结果排名,因为百度搜索的东西特别多好多页,用户根本不可能会一直看到100页,也就会第一页和后几页,在访问量为王的的互联网时代,排名相对重要。lucene对于得分有一套...
  • pangliang_csdn
  • pangliang_csdn
  • 2016年06月24日 11:36
  • 1134

2016书单总结--Lucene实战(第二版)--基础篇

2016书单总结–Lucene实战(第二版)–基础篇Lucene实战基于Lucene3.0,本示例以3.5为基础 Lucene由道格.卡丁编写的用于文本索引与搜索的高性能、可扩展的信息检索工具库通过5...
  • undergrowth
  • undergrowth
  • 2017年02月13日 21:26
  • 957
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Lucene
举报原因:
原因补充:

(最多只允许输入30个字)