走进生成对抗式网络(GAN)摘记

自从OpenAI的Ian J.Goodfellow大神发的开创性文章GAN以后,GAN的发展是膨胀式的,工业界的各个大牛也随之加入GAN蓬勃发展的大军中...
阅读(2946) 评论(4)

【内推】阿里集团2018届毕业生招聘

虽然已经毕业快三年了,每每想起自己当时找工作的经历,倍感内推的重要性。2018年毕业的童鞋看过来,今年阿里巴巴的应届生招聘已经启动,欢迎以下专业方向为语音、图像、视频、机器学习、自然语言处理等领域的优秀同学向我投递简历,邮箱sunbaigui85@126.com,手速一定要快,越晚机会越少。同时奉献上我之前找工作的两篇经验帖子:程序员找工作经验、北美求职之寻找内推资源。...
阅读(1581) 评论(0)

[CTR]CTR之fm以及ffm

在CTR中对ID特征vector化,然后求解最小loss一种常见的解决方案,如下收藏两个比较好用的方法,fm以及ffm。其中ffm在前两年的kaggle CTR相关比赛中,都能看到它的身影。...
阅读(2727) 评论(0)

[~ Tue, 26 July 2016] Deep Learning in arxiv

这里包括了深度学习相关的模型压缩、模型内置归一化、模型内置数据多样性、颜色补全、RGB着色、dssm、2D转3D...
阅读(1764) 评论(0)

[深度学习]暴走的残差深度学习网络家族!加深了网络还是隐式多网络叠加?

在2015年残差网络Deep Residual Learning for Image Recognition出来之后,2016年出现了大批量的达到与之相应效果的加深网络的方法。加深网络会带来如下三大类问题:1. 后向传播梯度消失;2. 前向传播信息量减少;3. 训练时间加长。为了缓解以上三大类问题,2016上半年已经有各式各样的加深网络的方法,让我们来看下下面五篇文章,前四篇文章主要注重与如何去使用各种方法加深网络,最后一篇文章对最近出现的残差网络家族做了一个深入的分析与思考,指出残差与其说是加深网络不如说...
阅读(11196) 评论(2)

[caffe]深度学习之MSRA图像分类模型Deep Residual Network(深度残差网络)解读

MSRA的深度残差网络在2015年ImageNet和COCO如下共5个领域取得第一名:ImageNet recognition, ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation。文章:Deep Residual Learning for Image Recognition; 代码:https://github.com/KaimingHe/deep-residual-networks...
阅读(26724) 评论(1)

深度学习之google deepmind的alphago AI人工智能算法技术演变历程

最近大家比较关心的围棋人机大战(google alphago深度学习+蒙特卡洛搜索算法 vs 李世石)中,google deepmind基于Nature2016文章的alphago算法在5局制的比赛中已经取得了3-1的成绩提前锁定了胜局。本文扒了一下google deepmind在该领域的一些文章,揭示了google alphago的算法技术演变历程。...
阅读(5800) 评论(2)

深度学习之图像分类模型inception v2、inception v3解读

inception v2与inception v3两种模型配置。 Inception v3单模型达到了21.2%的top1错误率,多模型达到了17.3%的top1错误率...
阅读(21778) 评论(1)

[caffe]深度学习之图像分类模型Batch Normalization[BN-inception]解读

一、简介 如果将googlenet称之为google家的inception v1的话,其Batch Normalization(http://arxiv.org/pdf/1502.03167v3.pdf)文章讲的就是BN-inception v1。 它不是网络本身本质上的内容修改,而是为了将conv层的输出做normalization以使得下一层的更新能够更快,更准确。 二、...
阅读(15977) 评论(6)

[caffe]深度学习之图像分类模型googlenet[inception v1]解读

googlenet和vgg是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper。跟vgg不同的是,googlenet做了更大胆的网络上的尝试而不是像vgg继承了lenet以及alexnet的一些框架,该模型虽然有22层,但大小却比alexnet和vgg都小很多,差不多20m的样子。...
阅读(13765) 评论(12)

2016 IT 互联网 各大公司内推

2016 IT 互联网 各大公司内推...
阅读(2181) 评论(0)

[Fri, 11 Dec 2015~ Fri, 25 Dec 2015] Deep Learning in arxiv

EmotionRecognition in the Wild via Convolutional Neural Networks and Mapped BinaryPatterns Caffemodel zoo里的一个分享。 Paper:http://www.openu.ac.il/home/hassner/projects/cnn_emotions/LeviHassnerICMI15.pdf...
阅读(1067) 评论(0)

[Tue, 1 Dec 2015 ~ Fri, 4 Dec 2015] Deep Learning in arxiv

AnalyzingClassifiers: Fisher Vectors and Deep Neural Networks fv与dnn特征进行比较,得出的结论是fv比较偏向上下文信息,而dnn只比较关注物体本身信息。   TowardsDropout Training for Convolutional Neural Networks 除了dropout神经元之外,是...
阅读(1486) 评论(1)

[Fri, 13 Nov 2015 ~ Mon, 23 Nov 2015] Deep Learning in arxiv

DEEPREINFORCEMENT LEARNING IN PARAMETERIZED ACTION SPACE dqn在足球游戏中的研究 代码:Complete source code for our agent isavailable at https://github.com/mhauskn/dqn-hfo and for the RoboCup 2D domainat ht...
阅读(1201) 评论(0)

[Sep 2015 ~ Oct 2015] Deep Learning in arxiv

Scale-awareFast R-CNN for Pedestrian Detection AggregatingDeep Convolutional Features for Image Retrieval 这种特征aggregate的方式,在几个数据集上有一定增长 LearningMulti-Domain Convolutiona...
阅读(966) 评论(0)
417条 共28页1 2 3 4 5 ... 下一页 尾页
    个人简介
    阿里巴巴从事深度学习、图像分类、图像搜索、广告点击率预测。
      Linkedin主页

    博客专栏
    个人资料
    • 访问:1102763次
    • 积分:12587
    • 等级:
    • 排名:第1100名
    • 原创:366篇
    • 转载:47篇
    • 译文:4篇
    • 评论:399条
    最新评论