绘制 sigmoid函数

原创 2007年09月30日 02:44:00
//用来计算从-4到4之间的sigmoid函数值的静态函数
public class Uitility
{
    
public static PointF[] GetPoints()
    
{
        PointF[] mypos
=new PointF[400];
        
int j=0;
        
for(double i=-4;i<=4;i+=0.02)
        
{
            mypos[j]
= new PointF((float)i,(float)Sigmoid(i));
            j
++;
        }

        
return mypos;
    }


    
public static double Sigmoid(double x)
    
{
        
return 1/(1+Math.Pow(Math.E,-x));
    }

}



//调用函数,完成函数的picturebox1上的绘制

Graphics grfx
=pictureBox1.CreateGraphics();
        
int picwidth=pictureBox1.Width;
int picheight=pictureBox1.Height;

float midx=(float)picwidth/2;
float midy=(float)picheight/2;


Pen bb
=new Pen(Brushes.Black,2);

grfx.DrawLine(Pens.Red,
new Point(0,picheight-1),new Point(picwidth,picheight-1));//横坐标
grfx.DrawLine(Pens.Red,new Point((int)midx,picheight),new Point((int)midx,0));

PointF[] cc
=Uitility.GetPoints();
PointF[] realone
=new PointF[cc.Length];
int cclen=cc.Length;    

//将与坐标无关的数值转换成与坐标相关的点
for(int i=0;i<cclen;i++)
{
    
float fx=cc[i].X*picwidth/8+midx;
    
float fy=cc[i].Y*picheight; 
    realone[i]
=new PointF(fx,-fy+picheight);
}

grfx.DrawLines(bb,realone);
 

相关文章推荐

sigmoid函数的FPGA实现

  • 2013年03月14日 19:16
  • 247KB
  • 下载

sigmoid函数

  • 2013年02月05日 19:59
  • 710KB
  • 下载

神经网络之激活函数(sigmoid、tanh、ReLU)

神经网络之激活函数(Activation Function)   转载:http://blog.csdn.net/cyh_24 :http://blog.csdn.net/cyh_24/arti...

深度学习常用激活函数之— Sigmoid & ReLU & Softmax

深度学习常用激活函数-ReLU
  • Leo_Xu06
  • Leo_Xu06
  • 2016年12月19日 20:02
  • 16527

关于Sigmoid函数

1 Sigmoid函数的定义 Sigmoid函数是一个在生物学中常见的S型的函数,也称为S形生长曲线。 Sigmoid函数由下列公式定义: Sigmoid函数的图形如S曲线,如下图所示:...

深度学习Deep Learning(03):权重初始化问题1_Sigmoid\tanh\Softsign激励函数

二、权重初始化问题1_Sigmoid\tanh\Softsign激励函数 github地址:https://github.com/lawlite19/DeepLearning_Python 1、说明 ...

深度学习笔记(4)——Sigmoid和Relu激活函数的对比

Relu是一个非常优秀的激活哈数,相比较于传统的Sigmoid函数,有三个作用: 1. 防止梯度弥散 2. 稀疏激活性 3. 加快计算 首先我们看下sigmoid和relu的曲线 ...

sigmoid函数解析与应用

sigmoid函数是一个具有良好性能的阈值函数,其函数在坐标轴上画出其曲线如图1所示。                                                       ...

逻辑回归LR推导(sigmoid,损失函数,梯度,参数更新公式)

主要参考文献:The equivalence of logistic regression and maximum entropy models,John Mount 一、声明 x(1),x(2),...

Sigmoid函数的理解

原文地址:http://computing.dcu.ie/~humphrys/Notes/Neural/sigmoid.html --- Continuous Output - The sig...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:绘制 sigmoid函数
举报原因:
原因补充:

(最多只允许输入30个字)