也谈数学基础与软件开发-追寻曾经的梦想(一)

原创 2006年05月31日 07:59:00

        经常看到数学与软件开发之间的话题,偶尔,朋友们也在一起谈论,数学与软件到底有什么联系。每当被问及此类话题的时候,心中似乎总要泛起阵阵涟漪,不能平静,然而又很难简单明了的表述,因此有一段时间我只好选择沉默。
        数学是什么?研究生时期,曾经有一位备受尊敬的老前辈诡秘地问我们这些小辈,不知是谁,脱口答曰:“数学是关于空间形式与数量关系的科学”!老前辈笑到:“我猜,你们一定有人这样回答的”,听到这话,我们不禁产生一丝茫然,难道不对吗?老人家慈眉善目,不无得意地对我们说:“年轻人,你们一定要记住,Hilbert说,所谓数学,就是大数学家脑袋中想的那些事情”!今天想起当年的这段往事,仿佛就是昨天的事情,我已经离开数学领域十几年了,想起这些往事,十分亲切,那份留恋油然而生……
        的确,要想理性的给数学下一个定义,是十分困难的,通常意义下大众能够直接了解的数学基本上都是一、二百年前的东西,至于大学标准数学系中能够接触到的比较近代的“数学”,例如,近世代数、泛函分析,代数拓扑等大体都可以追溯到一百年前,因此当一旦被问及近、现代数学究竟包含些什么东西,能够解释清楚的人,一定是具有很深数学修养的人,笔者肯定不是这类人。记得当年读数学系的时候,班级中有31人,高考数学卷面100分,附加题20分,班级中绝大多数都在105以上,最高117分,很惭愧,本人仅仅97分,居于平均分以下。遥想当年,每个人都意气风发,因为哪个年代是“学好数理化,走遍全天下的时期”。然而,专业数学特有的本性很快击溃了大多数人的梦想,半个学期过后,大多数人的数学家之梦基本上就荡然无存了,……。我的班主任是研究代数的,选定的教材是北师大老前辈张禾瑞先生、郝丙新先生的《高等代数》,那个时候我们真的对数学充满着憧憬,然而,很快,我们就发现,大学数学的味道,真的很难接受,相当难接受!两个月下来,我们大多数人搞不清楚,《高等代数》是干什么用的,数学分析,那就更成问题了,什么实数构造理论,ε-N语言,……,一系列干干巴巴的纯正的数学,一系列远离现实的数学、一系列具有百年以上历史的数学,让我们品尝到一股从未品尝过的辛辣,难道这是一杯苦酒吗?对许多同学而言,有一种上当或误入歧途的感觉。高年级的师兄、师姐们说:“你们这才哪跟哪呀?以后你们就知道了,这仅仅是开始,当你们品尝过什么‘泛函(分析)、实变(函数)’,那你就知道数学系得滋味了,保证你辛苦一学期后,难解其中味”!客观的说,数学系的成活率很低,一个年级也找不出几个(注意,一位数)能够理解所学内容的,我很幸运,成为少数中的一个。20年后的今天,回想当年的往事,真是虚汗一身,选择数学系是一种幸运,也许不是,我无法判断,夜深人静的时候,翻开那些精装的数学名著,我始终感觉到一种遗憾,有时候,真想回到那个曾经拥有梦想的领域,然而时间不能倒流了。
        数学离现实有多远,我不具备回答这个问题的资格。然而,我可以认真地告诉你,的确很远,数学与软件开发有着极大的差别,没有十年的铺垫,现代数学中你几乎不能做出像样一点的工作,即使是神童,也无法回避这个事实。软件则不然,如果你选择在软件领域中工作,你可以选择恰当的起点,2-3年即可以成熟的投入工作,在数学领域是不行的,那些经典课程,如前面提到的数学分析、泛函分析、近世代数等等是不可逾越的关隘。软件代码可以Copy,即使你不懂,数学研究在这方面几乎无法类比。经常听到有人谈起数学基础对软件开发的重要性,因此也心中痒痒的唠叨几句……。(待续)

 

相关文章推荐

软件开发与数学基础

一个C#中的例子——lambda表达式 我们多次提到,当前来说,Web开发领域,开发工具(或者叫平台)的“三巨头”是 .Net、JAVA和PHP。如果用.Net,那么一般用C#语言(或者VB),在C...
  • zhanzkw
  • zhanzkw
  • 2011年08月29日 11:17
  • 1286

从一个动漫设计师的梦想到android软件开发工程师的转变

本人今年刚刚大学毕业,由于自己的专业偏向于硬件,但是自己又想在以后从事软件方面的工作,想以后做一个动漫设计师(主要是因为看了日本的一些动漫后才决定的,而且据我了解,日本动漫产业是全球最好的,技术也是最...

软件测试之数学基础

  • 2011年10月02日 23:42
  • 701KB
  • 下载

程序开发之数学基础(一)

这个系列不是一个系统性地学习数学相关知识的专题,更多是一种程序开发中基础性数学知识的归纳和总结。 让我们从数字开始说起吧。 1. 按位计数法 人类解决问题一个方法就是从大量问题中分析和定义...

3D数学基础 图形与游戏开发的学习 (五) [3D坐标系]

前面讲了2D笛卡尔数学,2D坐标系中我们指定x轴向右为正、y轴向上为正的坐标系为标准形式。但是在3D坐标系中没有标准的形式,它们三个轴都是互相垂直的,即任意两个轴形成的平面与第三个轴垂直。     ...

3D数学基础 图形与游戏开发的学习 (六)[多坐标系]

· 为什么要使用多坐标系         任何一个3D坐标系都是可以无限延伸的,可以包含空间中所有的点。因此只需选定一个点作为世界坐标系就可以了,这样不是更简单吗?事实上,并不是这样的,不同的情况使用...

3D数学基础:图形与游戏开发 第3章笔记

多坐标系 世界坐标系 物体坐标系 摄像机坐标系 惯性坐标系 嵌套式坐标系 描述坐标系 坐标系转换 练习多坐标系世界坐标系别名:全局坐标系、宇宙坐标系 经典问题: 每个物体的位置和方向 摄像机的位置和...

《3D数学基础:图形与游戏开发 》

1,什么是欧拉角? 2,万向锁是一种什么现象? 3,游戏动画中遇到万向锁时会发生什么? 4,怎样解决万向锁这个问题?  一,什么是欧拉角?     用一句话说,欧拉角...

3D数学基础:图形与游戏开发_读书笔记01

前三章内容摘要 通常技术书籍第一章都是为了介绍技术背景,数学书为了循序渐进也是很基础的东西。就把重要的知识点抓出来 1)研究自然数和整数的领域称作离散数学,研究实数领域...

3D数学基础 图形与游戏开发的学习 第三章 多坐标系

笛卡尔坐标系 的定义 :第一节:1D数学计算机图形学第一准则:近似原则如果它看上去是对的它就是对的1.基本数学概念❤自然数:人类在大自然中对自己的羊或者牛进行计数,而出现自然数,所以从0到N的整数被称...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:也谈数学基础与软件开发-追寻曾经的梦想(一)
举报原因:
原因补充:

(最多只允许输入30个字)