第五周作业 2

原创 2012年03月21日 07:31:10

 /* (程序头部注释开始)
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生 
* 文件名称:                              
* 作    者: 计114-4   孙建朋                         
* 完成日期: 2012  年  3 月 19  日
* 版 本 号: 2012031902         
 
* 对任务及求解方法的描述部分
* 输入描述: 
* 问题描述: 分数的化简,放大,输出。
* 程序输出: 按要求输出
* 程序头部的注释结束
*/ 

 

#include<iostream>   
using namespace std;  
int gcd(int x,int y);    //求最大公约数   
class CFraction  
{private:  
int nume;  // 分子   
int deno;  // 分母   
public:  
    CFraction(int nu=0,int de=1); //构造函数,初始化用   
	
    void set(int nu=0,int de=1);    //置值,改变值时用   
    void input();               //按照"nu/de"的格式,如"5/2"的形式输入   
    void simplify();            //化简(使分子分母没有公因子)   
    void amplify(int n);            //放大n倍,如2/3放大5倍为10/3   
    void output(int style=0);       //输出:以8/6为例,style为0时,输出8/6;     
};  
//结构体   
CFraction::CFraction(int nu,int de)  
{  
    if(de!=0)  
    {  
        nume=nu; 
        deno=de;  
    }      
	else  
    {  
        cout<<"分母不能为零"<<endl;  
        exit(0);  
    }  
}  
//设定分子分母的值;   
void CFraction::set(int nu,int de)  
{  
    if(de!=0)  
    {  
        nume=nu;         
		deno=de;  
    }  
}  
//按照"nu/de"的格式,如"5/2"的形式输入   
void CFraction::input()  
{  
    char c;  
    while(1)  
    {  
        cin>>nume>>c>>deno;  
        if(c!='/')  
            cout<<"格式不对,请从新输入:"<<endl;  
		else if(deno==0)  
            cout<<"分母不能为零,请从新输入:"<<endl;  
        else  
            break;  
    }  
}  
//化简(使分子分母没有公因子)   
void CFraction::simplify()  
{  
    int n=gcd(nume,deno);  
	nume/=n;  
    deno/=n;  
}  
//求最大公约数;   
int gcd(int x,int y)  
{  
    int r;  
    while(y!=0)  
    {  
        r=x%y;  
        x=y;  
        y=r;  
    }  
    return x;  
}  
//放大n倍,如2/3放大5倍为10/3   
void CFraction::amplify(int n)  
{  
    nume*=n;  
}  
//输出:以8/6为例,style为0时,输出8/6;   
void CFraction::output(int style)  
{  
    int i;  
    switch(style)  
    {  
	case 0:  
        cout<<nume<<'/'<<deno<<endl;  
		break;  
    case 1:  
        i=gcd(nume,deno);  
		cout<<(nume/i)<<'/'<<(deno/i)<<endl;  
        break;  
    case 2:  
        int nu,de;  
        i=gcd(nume,deno);  
        nu=nume/i;  
        de=deno/i;  
        cout<<(nume/deno)<<"("<<(nu/de)<<'/'<<de<<")"<<endl;  
        break;  
    default:  
        cout<<nume<<'/'<<deno<<endl;  
    }  
}  
int main()  
{  
    CFraction c1;  
    c1.output(0);  
    c1.set(24,14);  
    cout<<"假分数形式为:"<<endl;  
    c1.output(0);  
    cout<<"扩大4倍后的值为:"<<endl;  
    c1.amplify(4);  
    c1.output(0);  
    c1.simplify();  
    cout<<"代分数形式为:"<<endl;  
    c1.output(2);  
    cout<<"请输入您想要的分数:"<<endl;  
    c1.input();  
    c1.simplify();  
    cout<<"化简后的值为:"<<endl;  
    c1.output(1);  
    system("pause");  
    return 0;  
}


机器学习第5周!

教辅说这周的作业是史上最难
  • Clifnich
  • Clifnich
  • 2016年09月05日 17:47
  • 625

machine-learning第五周 上机作业

毫无疑问,难度越来越大了,首先我们得复习相关概念: 1、导数(变化率)与微分 (变化量) 2、数学里的 e 为什么叫做自然底数? 3、女神的文章必不可少 剩下的必须慢慢啃了。总之,本章要完全理解我觉得...
  • dialoal
  • dialoal
  • 2016年01月22日 15:32
  • 1547

普林斯顿算法课第五周作业

Programming Assignment 5: Kd-Trees Write a data type to represent a set of points in the unit squar...
  • tumaolin94
  • tumaolin94
  • 2014年10月19日 11:15
  • 1498

Coursera吴恩达机器学习课程 总结笔记及作业代码——第5周神经网络续

Neural Networks:Learning上周的课程学习了神经网络正向传播算法,这周的课程主要在于神经网络的反向更新过程。1.1 Cost function我们先回忆一下逻辑回归的价值函数 J...
  • qq_27008079
  • qq_27008079
  • 2017年05月14日 21:21
  • 4920

coursera机器学习课程第五周——课程笔记

第五周课程学习结束,一直都是边上课边做笔记,没有想过在这里再梳理一遍然后将笔记整理出来,考虑之后觉得这一步很重要,可以借此对学过的这一周所有知识做一个梳理,方便自己更好的理解这些知识,而且这些笔记放在...
  • ccblogger
  • ccblogger
  • 2017年11月13日 18:29
  • 107

AndrewNg机器学习第五周作业:多输出神经网路最后输出结果含义

在做第五周的作业的时候产生了一个疑问: 第五周作业一开始是先训练一个三层神经网络的theta参数。5000个样本,400个features输入一个神经网络层,最后输出层有10个神经元,最后输出的a3...
  • csd54496
  • csd54496
  • 2016年11月05日 12:45
  • 961

关于machinelearning第二周的作业详细解析

这周来谈下关于第二周的作业的解析这周本来准备花三天来结束一下第二周的课程,因为觉得第一周还是便简单的,但是第二周的作业确实难到了我。也不能说是难到吧,提出了一个小小的问题可以说。回顾一下第一周,第一周...
  • Jason_TJ
  • Jason_TJ
  • 2016年04月28日 15:49
  • 1648

第五周工作总结

本周已完成工作内容及总结 1.对于这周呢,其实主要就是完成关于javascript的内容,在开始两天就是对两道考核进行实现; 2.接着就是导师对两道考核题进行评判,然后就是对之前的...
  • Do_Wanted
  • Do_Wanted
  • 2015年08月23日 09:12
  • 131

吴恩达机器学习笔记_第五周

神经网络——模型学习   Cost Function:从逻辑回归推广过来 计算最小值,无论用什么方法,都需要计算代价和偏导。   网络结构的前向传播和可向量化的特点:   BP算...
  • hunterlew
  • hunterlew
  • 2016年05月15日 11:43
  • 2232

机器学习-学习笔记 学习总结归纳(第五周)

基本形式例如绪论中的判断好瓜的算法,就可以用一个线性的模型来表示,好瓜 = 色泽 * 0.3 + 0.2 * 根 + 0.2 * 响声 == 1, 例如这样的线性模型来进行表示。线性回归 我的理解就...
  • linglian0522
  • linglian0522
  • 2017年07月14日 19:32
  • 183
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第五周作业 2
举报原因:
原因补充:

(最多只允许输入30个字)