分治法在算法设计中的运用

原创 2015年07月09日 22:13:28

在算法设计中,常见的设计思想有分治法,分支定界,回溯,动态规划等等。其中分治法是算法设计中最为重要的思想之一。分治法思想的本质就是分而治之,将解决一个问题的解空间一分为二,每个子问题的解空间步骤与原问题解法上类似,分治法很多时候用递归这种方式来实现。算法设计相关教材一般将归并排序作为分治法的典型应用,归并排序思想是将一个待排序的序列一分为二,递归地对每个子序列排序,这样一直分解下去,直到不能分解为止,然后从最小子序列(不能再分割的序列)排序后合并,自底向上来对整个序列排序。其实分治法还有很多运用,比如二叉树查找,快速排序等,都有分治法思想的影子。下面就拿简单的从1到n累计求和程序设计来说明分治法的思想。从1到n最简单的就是累加法,然后也有利用等差数列公式求和之后,再计算值;当然我们也可以根据求和的递归关系来用递归求解。下面给出几个版本的代码:

//============================================================================
// Name        : 1~n累计和,不考虑结果溢出问题
// Author      : @CodingGeek
// Version     : 1.0
// Copyright   : Your copyright notice
// Description : 1到n求和C代码实现
//============================================================================

#include <assert.h>

unsigned int sum1(unsigned int n)
{
	if (n <= 1)
	{
		return n;
	}
	int sum = 0;
	for (unsigned int i = 1; i <= n; i++)
	{
		sum += i;
	}

	return sum;
}

unsigned int sum2(unsigned int n)
{
	if (n <= 1)
	{
		return n;
	}

	return n + sum2(n - 1);
}

unsigned int sum3(unsigned int n) //1到n的和为n*(n+1)/2;
{
        return (n*(n+1) >> 1);
}




int main(void)
{
	assert(0 == sum1(0));
	assert(1 == sum1(1));
	assert(55 == sum1(10));
	assert(5050 == sum1(100));

	assert(0 == sum2(0));
	assert(1 == sum2(1));
	assert(55 == sum2(10));
	assert(5050 == sum2(100));

	assert(0 == sum3(0));
	assert(1 == sum3(1));
	assert(55 == sum3(10));
	assert(5050 == sum3(100));

        return 0;
}

下面考虑用分治法来实现,主要是体会分治法这种思想的运用。从1到n求和,我们可以这样将求和规模一分为二,前面一半序列和记为S1, 后面一半序列和记为S2,然后递归地进行下去,直到能求出最小子序列(不能再分解)的和,然后将两部分和合并,自底向上地计算出原序列的和,这样就可以得到整个序列的和了,下面是实现代码:

//============================================================================
// Name        : 1~n累计和,不考虑结果溢出问题
// Author      : @CodingGeek
// Version     : 1.0
// Copyright   : Your copyright notice
// Description : 1到n求和C代码实现,Conquer and Divide分治法实现
//============================================================================

#include <assert.h>

unsigned int sum(unsigned int begin, unsigned int end)
{
	if (begin == end) //递归结束条件,即分解到只有一个数求和为止
	{
		return begin;
	}

	unsigned int mid = begin + (end - begin) >> 1; //将解规模一分为二
        unsigned int s1 = sum(begin, mid); //计算前半部分和
	unsigned int s2 = sum(mid + 1, end); //计算后半部分和
        unsigned int sum = s1 + s2;   //将前后两部分的和合并
	return sum;
}


int main(void)
{
	assert(0 == sum(0, 0));
	assert(1 == sum(1, 1));
	assert(45 == sum(1, 9));
	assert(55 == sum(1, 10));
	assert(5050 == sum(1, 100));
	assert(12 == sum(3, 5));
        
        return 0;
}

总的来说,分治法就是将一个大的问题分解为求解规模较小的子问题,每个子问题求解方法与原问题类似,这样求出子问题的解后,将子问题的解再合并,就可以得到原问题的解了。后面工作中若有类似的问题程序设计,不妨考虑此思想!


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

算法设计和分析-分治法

  • 2015-10-22 22:08
  • 812KB
  • 下载

005-二分搜索-分治法-《算法设计技巧与分析》M.H.A学习笔记

二分搜索又称折半查找,用于在排序好的序列表中进行搜索,搜索效率高,可在最坏的情况下用O(log n)完成搜索任务。

009-矩阵乘法-分治法-《算法设计技巧与分析》M.H.A学习笔记

A、B是两个n*n的矩阵,计算C=A*B。

008-大整数乘法-分治法-《算法设计技巧与分析》M.H.A学习笔记

设u和v是两个n位二进制整数,传统乘法算法需要Θ(n2)的时间来计算u和v的乘积。 但我们还有一个Θ(n1.59)的改进算法。

算法设计--蛮力法&&分治法求最近对问题(C++实现)

最近对问题? 设p1=(x1,y1), p2(x2,y2), ....,pn=(xn,yn)是平面上n个点构成的集合S,最近对问题就是找出集合S中距离最近的点对。 两种算法思想: 1. 蛮力法:...

算法设计与分析——第四篇,分治法

写在前面的话—— 这次终于到分治法了,个人觉得分治法比较广泛的认知,就是快速排序法,不过似乎快速排序法只是用到了分治法的思想,但是并没有用到分治法,也不是很明白,反正这次出的题的话,能比较清楚地理解分...

算法设计--众数和重数问题(分治法)

问题描述: 给定含有n个元素的多重集合S,每个元素在S中出现的次数称为该元素的重数。多重集S中重数最大的元素称为众数。例如,S={1,2,2,2,3,5}。多重集S的众数是2,其重数为3。对于给定的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)