动态规划:0/1背包问题

原创 2015年11月19日 22:59:12

动态规划:0/1背包问题

1、问题简介

     百度百科:0/1背包问题


2、方法

     动态规划,主要用到的公式见下面(符号意思见代码处解释)


3、解决代码

// 动态规划法求0/1背包问题
// by 孙琨SealSun at UCAS 
// 2015.11.19 
#include<iostream>
using namespace std;
#define MAX 256
int min(int a,int b);
int max(int a,int b);
void Knapsack(int n,int c,int v[],int w[],int m[][MAX]); // 求最优值,价值最大 
void Traceback(int n,int c,int w[],int x[],int m[][MAX]);  // 求最优解,具体哪件物品被放入 

int min(int a,int b){
	return a<b?a:b;
}

int max(int a,int b){
	return a>b?a:b;
}

 // 逆推法,从m(n,c)-->m(n-1,c)--------->m(1,c)
 // 求得最优值,及所得最大价值 
void Knapsack(int n,int c,int v[],int w[],int m[][MAX]){ // n物品数,c背包容量,v各物品价值,w各物品重量,m最优解 
	// m(n,c) 
	int jMax = min(w[n],c); // 先验条件,j的最大取值范围 
	for(int j=0; j<jMax; j++){
		m[n][j] = 0;
	}
	for(int j=w[n];j<=c;j++){
		m[n][j]=v[n];
	}
	
	// m(2,c)
	for(int i=n-1; i>1;i--){
		jMax = min(w[n],c);
		for(int j=0; j<jMax; j++){
			m[n][j] = m[n+1][j];
		}
		for(int j=w[i];j<=c;j++){
            // max(第i个物品未被选上,第i个物品被选上) 
			m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
		}
	}
	
	// m(1,c)
	m[1][c] = m[2][c];
	if(c > w[1]){
		m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);
	}
	
	// 输出 
	int x[MAX]; 
	Traceback(n,c,w,x,m);
	cout << "最大物品价值为:" <<endl;
	cout << m[1][c]<<endl;
} 

 // 求得最优解,即具体每个背包是否放入 
 // x[i]表示第i个物品是否被选上,值为1则选上,为0则弃 
void Traceback(int n,int c,int w[],int x[],int m[][MAX]){
	for(int i=1; i<n; i++){
		if(m[i][c] == m[i+1][c]){ // 第i个物品没被选上 
			x[i] = 0;
		}
		else{ // 第i个物品被选上
			x[i] = 1;
			c -= w[i];
		}
	}
	
	x[n]= (m[n][c])?1:0; // 若第n个物品的价值存入m,则被选上 
	
	cout << "选中的物品是:"<<endl; 
	cout << "第" ; 
	for(int i=1; i<=n; i++){
		if(x[i] == 1){
			cout << i << " ";
		}
	}
	cout << "件物品" << endl;
}

// 测试用例
int main(){
	int n; // 物品数 
	int c; // 背包容量 
	int w[MAX]; // 各物品的重量 
	int v[MAX]; // 各物品的价值 
	int m[MAX][MAX]={0}; // 保存的当前最大价值,例m[2][c]表示去掉第1个物品后的最大价值 
	cout << "请输入背包的最大容量:"<<endl;
	cin >> c; 
	cout << "请输入物品的个数:"<<endl; 
	cin >> n;
	cout << "请分别输入物品的重量:"<<endl; 
	for(int i=1; i<=n; i++){
		cin >> w[i];
	}
	cout << "请分别输入物品的价值:"<<endl; 
	for(int i=1; i<=n;i++){
		cin >> v[i];
	}
    Knapsack(n,c,v,w,m);	
	return 0;
} 


4、结果截屏



版权声明:本文为博主原创文章,如需转载,请注明地址:http://blog.csdn.net/sunkun2013 举报

相关文章推荐

返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)