动态规划法改进:用序偶法求0/1背包问题

原创 2015年11月21日 12:06:24

动态规划法改进:用序偶法求0/1背包问题

1、问题



2、方法







3、实现代码

////序偶法求0/1背包问题(动态规划法改进版) 
//// by 孙琨SealSun at UCAS 
//// 2015.11.20 
#include<iostream>
using namespace std;
#define MAX 256

void Knapsack(int n,int c,int v[],int w[],int p[][MAX],int x[]); // 求最优值 
void Traceback(int n,int w[],int v[],int p[][MAX],int *head,int x[]); // 求最优解 

void Knapsack(int n,int c,int v[],int w[],int p[][MAX],int x[]){
	int *head = new int[n+2];
	head[n+1] = 0;
	p[0][0] = 0;
	p[0][1] = 0;
	int left = 0,right = 0,next = 1;
	head[n] = 1;
	for(int i=n; i>=1; i--){ // 整体 
		int k = left;
		for(int j=left; j<=right; j++){ // 某一段 
			if(p[j][0]+w[i]>c){
				break;
			}
			int y = p[j][0]+w[i];
			int m = p[j][1]+v[i];
			while(k<=right && p[k][0]<y){ // 平整段 
				p[next][0] = p[k][0];
				p[next++][1] = p[k++][1];
			}
			if(k<=right && p[k][0]==y){ // 跃升点 
				if(m<p[k][1]){
					m = p[k][1];
				}
				k++;
			}
			if(m>p[next-1][1]){
				p[next][0] = y;
				p[next++][1] = m;
			}
			while(k<=right && p[k][1]<=p[next-1][1]){
				k++;
			}
		}
		while(k<=right){
			p[next][0] = p[k][0];
			p[next++][1] = p[k++][1];
		}
		left = right+1;
		right = next-1;
		head[i-1] = next;
	}
	Traceback(n,w,v,p,head,x);
	cout << "最大物品价值为:" <<endl;
	cout << p[next-1][1]<<endl;
}

void Traceback(int n,int w[],int v[],int p[][MAX],int *head,int x[]){
	int j = p[head[0]-1][0];
	int m = p[head[0]-1][1];
	for(int i=1; i<=n; i++){
		x[i] = 0;
		for(int k=head[i+1];k<=head[i]-1;k++){ 
			if(p[k][0]+w[i]==j && p[k][1]+v[i]==m){ // 若值已存入,则此代表物品已被选中,选中为1 
				x[i] = 1; 
				j = p[k][0];
				m = p[k][1];
				break;
			}
		}
	}
	cout << "选中的物品是:"<<endl; 
	cout << "第" ; 
	for(int i=1; i<=n; i++){
		if(x[i] == 1){
			cout << i << " ";
		}
	}
	cout << "件物品" << endl;
}

// 测试用例
int main(){
	int n; // 物品数 
	int c; // 背包容量 
	int w[MAX]; // 各物品的重量 
	int v[MAX]; // 各物品的价值 
	int p[MAX][MAX]={0}; // 保存的当前最大价值,p[][1]为当前最优值 
	int x[MAX]={0}; // 最优解 
	cout << "请输入背包的最大容量:"<<endl;
	cin >> c; 
	cout << "请输入物品的个数:"<<endl; 
	cin >> n;
	cout << "请分别输入物品的重量:"<<endl; 
	for(int i=1; i<=n; i++){
		cin >> w[i];
	}
	cout << "请分别输入物品的价值:"<<endl; 
	for(int i=1; i<=n;i++){
		cin >> v[i];
	}
    Knapsack(n,c,v,w,p,x);	
	return 0;
}


4、结果截图


版权声明:本文为博主原创文章,如需转载,请注明地址:http://blog.csdn.net/sunkun2013 举报

相关文章推荐

0/1背包问题的动态规划法求解 —— Java 实现

0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握。        值得提...

动态规划法(四)——0/1背包问题

问题描述 有n个物体,重量分别是w0~wn-1,每个物体放入背包后可获得的收益分别为p0~pn-1,背包载重为M,且所有物体要么放要么不放,不能只放一部分。求如何放物体可以得到最高的收益。 问题分...

我是如何成为一名python大咖的?

人生苦短,都说必须python,那么我分享下我是如何从小白成为Python资深开发者的吧。2014年我大学刚毕业..

动态规划法—0-1背包问题(二)

问题的描述   假如我们用C表示最大价值,那么C[n,W]就表示n个物品,在背包容量为W时,背包的最大价值。 在求这个最大价值之前,我们可能会考虑某一子问题的最大价值,用C[i,w]表示,意...

动态规划法—0-1背包问题(一)

0-1背包问题 问题描述 给定n个物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为W。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?约束条件 放入背包的物品的重量<=背...

0/1背包问题的动态规划法

背包问题: 在M件物品取出若干件放在空间为W的背包里,每件物品的重量为W1,W·2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 注意:在本题中,所有的重量值均为整数。...

0-1背包问题 动态规划法

代码#includeusing namespace std;int KnapSack(int n,int w[],int v[],int C,int x[]){ int V[100][100]...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)