[数据结构与算法]哈希表(等概率情况下)查找成功与查找不成功的平均查找长度

转载 2014年11月17日 15:34:33

做到一道求 哈希表查找成功与查找不成功 情况下平均查找长度的计算问题,迷惑了好一会,在这里总结下来:

  首先,你要明白的是平均查找长度求的是期望,那么你就按照求期望的方法来求平均查找长度吧,千万记着期望怎么求平均查找长度就怎么求啊。

  题目:

在地址空间为0~16的散列区中,对以下关键字序列构造两个哈希表:
{Jan, Feb, Mar, Apr, May,  June, July, Aug, Sep, Oct, Nov, Dec}
(1) 用线性探测开放地址法处理冲突;
(2) 用链地址法(开散列存储)处理冲突 
并分别求这两个哈希表在等概率情况下查找成功和查找不成功时的平均查找长度。设哈希函数为 
H(key) = i/2,其中i为关键字中第一个字母在字母表中的序号,如下:
A B C D E F G H I  J    K   L  M  N  O   P   Q   R  S  T   U   V   W  X  Y   Z
1 2 3 4  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

  解决如下:

(1) 线性探测进入散列区的次序如下,X 代表冲突,要找下一个空格
Jan -> 5
Feb -> 3
Mar -> 6
Apr -> 0
May -> 6X -> 7
June -> 5X -> 6X -> 7X -> 8
July -> 5X -> 6X -> 7X -> 8X -> 9
Aug -> 0X -> 1
Sep -> 9X -> 10
Oct -> 7X -> 8X -> 9X -> 10X -> 11
Nov -> 7X -> 8X -> 9X -> 10X -> 11X -> 12
Dec -> 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Apr

Aug

Dec

Feb

 

Jan

Mar

May

Jun

July

Sep

OCt

Nov

 

 

 



  很明显,查找成功时,查找Jan、Feb、Mar等仅需要一次,其余的也可以由上面看出来
  所以查找成功时平均查找长度 (ASL) = (1 + 1 + 1 + 1 + 2 + 4 + 5 + 2 + 2 + 5 + 6 + 1) / 12 = 31/12 = 2.58 为什么是除以12呢?因为查找成功的情况总共有12种啊

  查找不成功时呢?什么是查找不成功呢?查找不成功就是从查找位置开始直到一个位置为空需要比较的次数。

  首先,26/2=13,也就是说查找不成功的情况也只能出现在0~13之间,只有这14种情况。

  举个例子来说,查找Aay吧,根据hash表,与Apr比较不匹配,接着与Aug比较又是不匹配,接着与Dec比较又是不匹配,又与Feb比较又是不匹配,到了4位置的时候为空了,即4上内容与nullkey比较,结果为空,所以查找Aay失败,查找长度为5。同理也能计算其他的。

  最终平均查找失败时平均查找长度为(5+4+3+2+1+9+8+7+6+5+4+3+2+1)/14=60/14。注意啊,这里是除以14啊。(这是求期望的方法啊)

(2) 链地址法
0 之下有 Apr, Aug
2 之下有 Dec
3 之下有 Feb
5 之下有 Jan, June, July
6 之下有 Mar, May
7 之下有 Oct, Nov
9 之下有 Sep
查找成功时候,查 Apr, Dec, Feb, Jan, Mar, Oct, Sep 各需 1 次,查 Aug, June, May, Nov 各需 2 次,查 July 需 3 次。

所以查找成功时平均查找长度 (ASL) = (1 * 7 + 2 * 4 + 3 * 1) / 12 = 18/12 = 1.5

查找失败时平均查找长度:举个例子吧,查找Boy,2/2=1,而1的地方的指针为空,就不用比较就可以知道不存在,查找产度为0。查找Aay,与Apr比较不匹配,与Aug比较不匹配,同时,Aug指向下一个节点的指针为空,就可以知道查找失败,查找长度为2。

 所以查找失败的平均查找长度:(2+1+1+3+2+2+1)/14=12/14。



相关文章推荐

教你如何迅速秒杀掉:99%的海量数据处理面试题

教你如何迅速秒杀掉:99%的海量数据处理面试题作者:July出处:结构之法算法之道blog前言   一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步...

[算法系列之十八]海量数据处理之BitMap

一:简介所谓的BitMap就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了bit为单位来存储数据,因此在存储空间方面,可以大大节省。二:基本思想我们用一个具体的例子来...

[算法系列之十七]数据压缩之位图

在之前的文章([算法系列之十六]数据压缩之游程编码)中,我们知道了如何压缩一段重复元素组成的数据。这种压缩称为“游程编码”,该算法在无损数据压缩传输时非常方便。但问题是数据必须遵循特定格式。比如,字符...

[经典面试题]完美洗牌算法

题目有个长度为2n的数组{a1,a2,a3,…,an,b1,b2,b3,…,bn},希望排序后{a1,b1,a2,b2,….,an,bn},请考虑有无时间复杂度o(n),空间复杂度0(1)的解法。来源...

[面试经]STL bitset用法总结

声明 #include using std::bitset;bitset的定义和初始化 bitset bitvec; //32位,全为0。给出的长度值必须是常量表达式。正如这里给出的,长度值必...

海量数据处理算法—Bit-Map

1. Bit Map算法简介         来自于《编程珠玑》。所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在...
  • hguisu
  • hguisu
  • 2012-08-21 16:14
  • 35314

海量数据处理面试题集锦

十七道海量数据处理面试题与Bit-map详解作者:小桥流水,redfox66,July。前言    本博客内曾经整理过有关海量数据处理的10道面试题(十道海量数据处理面试题与十个方法大总结),此次除了...

030.极点追踪(2):圆周率π的恒定基态常数值原理(原)

圆 波 旋 转 场 《宇宙无极定律·凝聚态宇宙学·极点追踪(2):圆周率π的恒定基态常数值原理》 ●圆周波动率的宇宙本原规律性法则宇宙生命工作室※宇宙生命工作室箴言:        当我们学...

哈希表等概率情况下查找成功和查找不成功的平均查找长度的计算

最近复习了下数据结构中的哈希表,发现在计算等概率情况下查找不成功的平均查找长度时比较迷茫,不知道到底是怎么计算出来的。现在通过查阅资料终于知道如何计算了,所以记录下来以供以后查阅。    下面看下2...

哈希表查找不成功时的平均查找长度

哈希表查找不成功时的平均查找长度 哈希表查找不成功时的平均查找长度(zz)哈希表查找不成功怎么计算?解答:先建好表,然后可以算出每个位置不成功时的比较次数之和,再除以表空间个数! 例如:散列函数为...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)