[AirFlow]AirFlow使用指南四 DAG Operator Task

翻译 2017年08月03日 20:02:28

1. DAG

在Airflow中,DAG或有向无环图是你运行所有任务的集合,以某种组织方式来反映所有任务之间的关系和依赖。

例如,一个简单的DAG可以包括三个任务:A,B和C.可以说A必须在B运行之前成功运行,但C可以随时运行。 可以说任务A在5分钟后超时,为防止失败,B可以最多重启5次。也可以说工作流从某个特定日期开始每晚10点运行。

以这种方式,DAG描述了你如何执行工作流程; 但是请注意,我们还没有说出我们实际想要做的事情! A,B和C可以是任何东西。也许在C发送电子邮件时,A为B准备数据以进行分析。或者A监视你的位置,以便B可以打开你的车库门,而C打开房子的灯。重要的是,DAG不关心其内部任务干了什么;它的目的是确保在正确的时间或以正确的顺序干任何事情,或可以正确处理任何意想不到的问题。

DAG在标准的Python文件中定义,放置在Airflow的DAG_FOLDER中。Airflow将执行每个文件中的代码来动态构建DAG对象。你可以拥有任意数量的DAG,每个可以拥有任意数量的任务。通常,每一个应该对应于一个逻辑工作流。

1.1 作用域(scope)

Airflow将加载从DAG文件导入的任何DAG对象。最重要的是,这意味着DAG必须出现在globals()中。考虑以下两个DAG。只有dag_1将被加载;另一个只出现在局部作用域内。

dag_1 = DAG('this_dag_will_be_discovered')

def my_function()
    dag_2 = DAG('but_this_dag_will_not')

my_function()

有时这有很好的用处。例如,SubDagOperator的通用模式是在函数内定义子dag,以便Airflow不会将其作为独立DAG进行加载。

1.2 默认参数

如果将default_args字典传递给DAG,DAG将会将字典应用于其内部的任何Operator上。这很容易的将常用参数应用于多个Operator,而无需多次键入。

default_args=dict(
    start_date=datetime(2016, 1, 1),
    owner='Airflow')

dag = DAG('my_dag', default_args=default_args)
op = DummyOperator(task_id='dummy', dag=dag)
print(op.owner) # Airflow

1.3 上下文管理器(Context Manager)

备注

Airflow 1.8引入

DAG可用作上下文管理器,以自动为DAG分配新的Operator。

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
    op = DummyOperator('op')

op.dag is dag # True

2. Operators

DAG描述了如何运行工作流,Operators决定了实际如何完成。

Operator描述了工作流中的单个任务。Operator通常(但不总是)原子性的,这意味着它们可以独立存在,不需要与其他Operator共享资源。DAG将确保Operator按正确的顺序运行; 除了这些依赖之外,Operator通常独立运行。实际上,他们可能会运行在两台完全不同的机器上。

这是一个微小但非常重要的一点:一般来说,如果两个Operator需要共享信息,如文件名或少量数据,则应考虑将它们组合成一个Operator。如果绝对不可避免,Airflow确实有一个名为XCom的Operator可以交叉通信。

Airflow为Operator提供许多常见任务,包括:

  • BashOperator - 执行bash命令
  • PythonOperator - 调用任意的Python函数
  • EmailOperator - 发送邮件
  • HTTPOperator - 发送 HTTP 请求
  • SqlOperator - 执行 SQL 命令
  • Sensor - 等待一定时间,文件,数据库行,S3键等...

除了这些基本的构建块之外,还有更多的特定Operator:DockerOperatorHiveOperatorS3FileTransferOperatorPrestoToMysqlOperatorSlackOperator ...总之你能想到的!

airflow/contrib/目录包含更多由社区建立的Operator。这些Operator并不总是与主包(in the main distribution)中的Operator一样完整或经过很好的测试,但允许用户更轻松地向平台添加新功能。

Operators只有在分配给DAG时,才会被Airflow加载。

2.1 DAG分配

备注

在Airflow 1.8版本中引入

Operator不需要立即分配给DAG(以前dag是必需的参数)。但是一旦operator分配给DAG, 它就不能transferred或者unassigned. 当一个Operator创建时,通过延迟分配或甚至从其他Operator推断,可以让DAG得到明确的分配(DAG assignment can be done explicitly when the operator is created, through deferred assignment, or even inferred from other operators.).

dag = DAG('my_dag', start_date=datetime(2016, 1, 1))

# 明确指定DAG
explicit_op = DummyOperator(task_id='op1', dag=dag)

# 延迟分配
deferred_op = DummyOperator(task_id='op2')
deferred_op.dag = dag

# 从其他Operator推断 (linked operators must be in the same DAG)
inferred_op = DummyOperator(task_id='op3')
inferred_op.set_upstream(deferred_op)

2.2 位移组合

备注

在Airflow 1.8版本中引入

传统上,使用set_upstream()set_downstream()方法来设置Operator之间的依赖关系。在Airflow 1.8中,可以使用Python位移操作符>><<。 以下四个语句在功能上相当:

op1 >> op2
op1.set_downstream(op2)

op2 << op1
op2.set_upstream(op1)

当使用位移操作符去设置Operator依赖关系时,根据位移操作符指向的方向来判断Operator之间的依赖关系。例如,op1 >> op2 表示op1先运行,op2然后运行。可以组合多个Operator - 记住从左到右执行的链,总是返回最右边的对象。 例如:

op1 >> op2 >> op3 << op4

等价于:

op1.set_downstream(op2)
op2.set_downstream(op3)
op3.set_upstream(op4)

为方便起见,位移操作符也可以与DAG一起使用。 例如:

dag >> op1 >> op2

等价于:

op1.dag = dag
op1.set_downstream(op2)

我们可以把这一切整合在一起,建立一个简单的管道:

with DAG('my_dag', start_date=datetime(2016, 1, 1)) as dag:
    (
        dag
        >> DummyOperator(task_id='dummy_1')
        >> BashOperator(
            task_id='bash_1',
            bash_command='echo "HELLO!"')
        >> PythonOperator(
            task_id='python_1',
            python_callable=lambda: print("GOODBYE!"))
    )

3. Task

一旦Operator被实例化,它被称为"任务"。实例化为在调用抽象Operator时定义一些特定值,参数化任务使之成为DAG中的一个节点。

4. 任务实例化

一个任务实例表示任务的一次特定运行,并且被表征为dag,任务和时间点的组合。任务实例也有指示性状态,可能是“运行”,“成功”,“失败”,“跳过”,“重试”等。

5. 工作流

现在你已经熟悉了Airflow的核心构建块。一些概念可能听起来似曾相似,但词汇可以这样概念化:

  • DAG:描述工作发生的顺序
  • Operator:执行某些工作的模板类
  • Task:Operator的参数化实例
  • TaskInstances(任务实例):1)已分配给DAG的任务,2)具有DAG特定运行相关的状态

通过组合DAGOperators来创建TaskInstances,可以构建复杂的工作流。

原文:http://airflow.incubator.apache.org/concepts.html#

相关文章推荐

Airflow使用入门指南

Airflow能做什么Airflow是一个工作流分配管理系统,通过有向非循环图的方式管理任务流程,设置任务依赖关系和时间调度。Airflow独立于我们要运行的任务,只需要把任务的名字和运行方式提供给A...

[AirFlow]AirFlow使用指南三 第一个DAG示例

经过前两篇文章的简单介绍之后,我们安装了自己的AirFlow以及简单了解了DAG的定义文件.现在我们要实现自己的一个DAG.1. 启动Web服务器使用如下命令启用:airflow webserver ...

阿里 离线数据同步工具 DataX 初试

DataX : 一个异构数据源离线同步框架,通过插件体系完成数据同步过程。reader插件用于读入,writer插件用于写出,中间的framework可以定义transform插件完成数据转化的需要。...

Azkaban学习笔记 --- Azkaban调研笔记

Azkaban学习笔记 --- Azkaban调研笔记

airflow FAQ

关于airflow使用过程中的一些常见问题记录

[AirFlow]AirFlow使用指南二 DAG定义文件

1. Example""" Code that goes along with the Airflow tutorial located at: https://github.com/airbnb/a...

利用Qt进行接口间通信

> 接口的作用,就是提供一个与其他系统交互的方法。其他系统无需(也无法)了解内部的具体细节,只能通过对外提供的接口来与进行通信。 纯虚函数(槽也不例外)很容易理解,那么信号呢? > 在 Qt 中,...

强烈推荐:给去美国的新生说几句(转载),超实用

===========(一)安全须知=========== 初来乍到,人地生疏,有一些安全事项需要注意,以避免不必要的麻烦和损失。这里列举一些比较常见的例子: 个人隐私 和国内不同的是,在美国一...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)