【bzoj3166】【HEOI2013】【Alo】【set+可持久化trie】

原创 2016年05月31日 14:53:15

Description

Welcome to ALO ( Arithmetic and Logistic Online)。这是一个VR MMORPG ,
如名字所见,到处充满了数学的谜题。
现在你拥有n颗宝石,每颗宝石有一个能量密度,记为ai,这些宝石的能量
密度两两不同。现在你可以选取连续的一些宝石(必须多于一个)进行融合,设为  ai, ai+1, …, a j,则融合而成的宝石的能量密度为这些宝石中能量密度的次大值
与其他任意一颗宝石的能量密度按位异或的值,即,设该段宝石能量密度次大值
为k,则生成的宝石的能量密度为max{k xor ap | ap ≠ k , i ≤ p ≤ j}。 
现在你需要知道你怎么选取需要融合的宝石,才能使生成的宝石能量密度最大。 

Input

第一行,一个整数 n,表示宝石个数。 
第二行, n个整数,分别表示a1至an,表示每颗宝石的能量密度,保证对于i ≠ j有 ai ≠ aj。 
 

Output

输出一行一个整数,表示最大能生成的宝石能量密度。 

Sample Input

5
9 2 1 4 7


Sample Output

14

HINT

【样例解释】 

选择区间[1,5],最大值为 7 xor 9。 

对于 100%的数据有 1 ≤ n ≤ 50000, 0 ≤ ai ≤ 10^9

题解: 

            首先对序列按位置建立可持久化trie.

            把所有数按权值降序排序.从大到小加入.

            用set找到当前数x后继的后继的位置r,和前驱的前驱的位置l.

             x的可行区间就是[l+1,r-1];

             在可持久化trie里查询即可.

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>
#define N 50010
#define inf 2100000000
using namespace std;
set<int>s;
int root[N],bin[N],size[N*35],ch[N*35][2],n,cnt,ans;
struct use{int pos,v;}a[N];
bool cmp(use a,use b){return a.v>b.v;}
int insert(int x,int v){
  int t,y;t=y=++cnt;
  for (int i=30;i>=0;i--){
     int t=v&bin[i];t>>=i;
     ch[y][0]=ch[x][0];ch[y][1]=ch[x][1];
     y=ch[y][t]=++cnt;
     x=ch[x][t];
     size[y]=size[x]+1;
  } 
  return t;
} 
int query(int y,int x,int v){
  int ans(0);
  for (int i=30;i>=0;i--){
     int t=v&bin[i];t>>=i;
     if (size[ch[y][t^1]]-size[ch[x][t^1]]) 
       y=ch[y][t^1],x=ch[x][t^1],ans+=bin[i];
     else y=ch[y][t],x=ch[x][t];
  } 
  return ans;
}
int main(){
  scanf("%d",&n);bin[0]=1;
  for (int i=1;i<=n;i++) scanf("%d",&a[i].v),a[i].pos=i;
  for (int i=1;i<=30;i++) bin[i]=bin[i-1]*2;
  for (int i=1;i<=n;i++) root[i]=insert(root[i-1],a[i].v);
  sort(a+1,a+n+1,cmp);s.insert(-1);s.insert(inf);s.insert(-2);s.insert(inf+1);
  s.insert(a[1].pos); 
  for (int i=2;i<=n;i++){
    int l,r;
    set<int>::iterator x,y;
	x=y=s.lower_bound(a[i].pos);
	x--;x--;l=*x+1;
	y++;r=*y-1;
	l=max(l,1);r=min(r,n);
	ans=max(ans,query(root[r],root[l-1],a[i].v));
	s.insert(a[i].pos); 
  }
  cout<<ans<<endl;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

bzoj3166: [Heoi2013]Alo

题目大意:给定一个数列,求一个区间[l,r],区间次大值与区间其他任意数的异或值最大,输出这个最大值; 思路:看到xor最大,就想到可持久化trie。然后我们先要预处理出对于每个数x,区间次大值为x...

[bzoj3166][HEOI2013]ALO

题目大意现有一个序列,一段长度>1区间的权值为区间内的次大值与区间内除次大值外的数的异或最大值。 例如:9 2 1 4 7 次大值为7,7 xor 9=14最大。 保证序列内元素两两不同。N...

【BZOJ】【P3166】【Heoi2013】【Alo】【题解】【可持久化Trie+set】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3166 区间xor最大,用可持久化Trie解决,其实问题就在于找一个合适的最大的区间 把a排序...

BZOJ 3166 HEOI2013 Alo 可持久化Trie树

题目大意:给定一个不重复的序列a,在a中任选一个区间,求区间内的次大值与区间内的任意一个其它数的最大的异或值 首先我们枚举次大值 对于一个次大值 它可能选择的另一个数的取值范围为(l,r) 其中l为...
  • PoPoQQQ
  • PoPoQQQ
  • 2014年10月21日 11:28
  • 1258

BZOJ3166 [Heoi2013]Alo 可持久化Trie

题意:给定长度为n的整数序列,一个连续子段的收益为子段次大值xor子段中任意数,求最大收益子段值 Sol: 考虑枚举次大值是谁,则一个数作为次大值时的扩张范围是[左边第二个大于她的数+1 , 右边...

BZOJ 3261 最大异或和 可持久化Trie

前两天被带修改的可持久化线段树给搞毛了,弃疗了QaQ,数据结构搞累了准备换一换其它的。然而,还是遇到了数据结构。0.0 可持久化Trie——如果理解了主席树这个也就很好理解了,建树的方式是相同的,对...

【BZOJ】【P3261】【最大异或和】【题解】【可持久化Trie】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3261 一开始自己YY了一个log^2的做法,没想到空间大爆炸,只好去写可持久化Trie了……...

BZOJ 2741 【FOTILE模拟赛】L 可持久化Trie 分块

题意在线求a[l,r]间最大连续子串xor和。题解我的程序竟然排Rank 6,不科学。。。 a[l,r]的xor和转化为b[l-1]^b[r] 那么问题转化为求b[l-1,r]的任意2个数的xor...

BZOJ 3261 最大异或和 可持久化Trie

败了败了。。题意很清楚了。 只在队尾添加所以上Trie。 a[l,r] xor结果在我程序中应该写的是trie[l-2], trie[r-1],然而我写了trie[l-1], trie[r]。。。WA...

BZOJ 3439 Kpm的MC密码 Trie+可持久化线段树

题目大意:定义一种串,如果一个串是另一个串的后缀,那么这个串称作kpm串。问一个串的标号第k大的kpm串是多少。 思路:将所有的串翻转之后变成前缀,全都插进一个Trie树中。每个节点维护一个...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【bzoj3166】【HEOI2013】【Alo】【set+可持久化trie】
举报原因:
原因补充:

(最多只允许输入30个字)