关闭

matplotlib画图2

fig, ax = plt.subplots(figsize=(10, 8)) plt.grid() line1 = ax.plot(t, eye_dice, linewidth=1, label='eye_dice', color='darkorange') line2 = ax.plot(t, len_dice, linewidth=1, label='len_dice', color='m')...
阅读(12) 评论(0)

ubuntu16.04 虚拟机 安装win7/win10

1.安装VirtualBox sudo apt-get install virtualbox 然后就是等待安装完毕,然后在ubuntu的dash中搜索virtualbox,启动即可。2.安装虚拟机 点击新建 输入名字,点击下一步 设置内存,不建议太大,毕竟是虚拟机,占内存,点击下一步 创建虚拟硬盘(如果以前没有创建),点击创建 选择默认,点击下一步 选择动态...
阅读(28) 评论(0)

Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Convolutional Networks_2017

作者:Hao Dong , Guang Yang 等训练图像被插值为1*1*1,大小为240×240×155,然后经过数据标准化(每套多模态MRI减去自己的均值,除以标准差).肿瘤被分了4类,1.necrosis(坏死), 2.edema(水肿), 3.non-enhancing, 4.enhancing tumor.使用FLAIR图像分割完整的肿瘤区域和除水肿之外的肿瘤,使用T1c(T1-wei...
阅读(31) 评论(0)

matplotlib画图1

import numpy as np import matplotlib.pyplot as pltpath = '' N = 5 menMeans = (20, 35, 30, 35, 27) womenMeans = (25, 32, 34, 20, 25) girls = (12, 3, 45, 12, 4) ind = np.arange(N) # the x locations fo...
阅读(70) 评论(0)

目标检测4 Faster R-CNN

作者:Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun这篇文论干了什么呢?目标检测网络基于区域建议( region proposal)算法,首先得生成区域建议,才能进行检测,暴露出区域建议是目标检测的一个瓶颈。所以,论文提出一个区域建议网络( Region Proposal Network ,RPN),使用检测网络,共享全图卷积特征,使得生成...
阅读(44) 评论(0)

目标检测3 Fast R-CNN

作者:Ross Girshick Microsoft Research 开源代码: https://github.com/rbgirshick/fast-rcnnr-cnn的缺点: 1.多状态通道训练;首先使用log损失微调cnn,然后使用SVM(而不是softmax)进行分类,最后还要使用线性回归模型来提高精确度。 2.训练占内存和耗时间; 3.目标检测很慢;即测试也很慢。 为什么这么...
阅读(67) 评论(0)

目标检测2 SPPnet

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren现在的深度卷积神经网络要求输入图像固定大小,这样的要求减小了图像或者随意大小子图像的识别精确度。作者提出空间金字塔池化来解决上边问题。这个新网络叫做SPP-ne...
阅读(60) 评论(0)

目标检测1 RCNN

Rich feature hierarchies for accurate object detection and semantic segmentation 作者:Ross Girshick Jeff Donahue Trevor Darrell   与图像分类不同,检测要求在图片中定位目(可能多个目标)。   第一个挑战就是,目标定位,论文使用论文recognition using...
阅读(52) 评论(0)

oh my zsh 简单使用

安装zsh:sudo apt-get install zsh 安装完成后设置当前用户使用: zsh:sudo chsh -s /bin/zsh 安装 git:sudo apt-get install git 安装「oh my zsh」: 自动安装:wget https://github.com/robbyrussell/oh-my-zsh/raw/master/tools/install.s...
阅读(59) 评论(0)

git简单使用笔记

连接远程仓库: git remote add origin https://github.com/OliveKong/poster.git (其实是将https://github.com/OliveKong/poster.git 重新名命,缩写为origin) 如果要换到另一个远程仓库,先删除当前远程仓库,再添加新仓库: git remote rm origin git remote ad...
阅读(57) 评论(0)

White matter hyperintensity and stroke lesion segmentation and differentiation using cnn_part2_2017

4.2 Comparison to state-of-the-art 作者和当前最好的方法进行了比较,LST(http://www.statistical-modelling.de/lst.html)工具里边LPA算法和LGA 算法。LPA只用到FLAIR图像,LGA用到了FLAIR图像和T1加权图像。进行比较的还有DeepMedic。还有一些参数设置。 表2展示了自动分割和专家...
阅读(62) 评论(0)

python fuzzywuzzy模块 模糊字符串匹配详细用法

github主页导入:>>> from fuzzywuzzy import fuzz >>> from fuzzywuzzy import process1)>>> fuzz.ratio("this is a test", "this is a test!") out 97 >>> fuzz.partial_ratio("this is a test", "this is a test!")...
阅读(949) 评论(0)

White matter hyperintensity and stroke lesion segmentation and differentiation using cnn_part1_2017

作者:R. Guerrero ∗1 , C. Qin ∗1 , O. Oktay 1 Abstract 最近,一些方法被提出来自动分割WMH区域。这些方法大多分割MRI图像的WHM,但是不能区分WMH和中风。其他能够区分脑部MRI图像不同病理的方法,不能同时分割大脑WMH和中风。这篇论文提出一种卷积神经网络,能过分割高信号,并且能够区分WMH和中风区域。特别的是,我们的目的是区分由于中风损伤造成(...
阅读(143) 评论(0)

医学图像涉及到的窗宽窗位 2

介绍6个字段: 1.(0028, 1025)Rescale Intercept 2.(0028, 1053)Rescale Slope 可以简单的理解: Rescale Intercept就是截距, Rescale Slope为斜率。 因为每个公司的设备不同,就算同一家公司的不同设备,每台设备产生出来的原始数据(.dcm里边存储的数据)也可能是不同的。这个怎么解释呢。比如dicom规...
阅读(107) 评论(0)

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks2017

作者:Pranav Rajpurkar ∗ Awni Y. Hannun ∗ Masoumeh Haghpanahi Codie Bourn Andrew Y. NgAbstract 我们研发了一种算法,在检测由单个导联可穿戴监视器记录的很多种心率不齐心电图上,能够提高委员会认证医生的表现。我们训练了一个34层的卷积神经网络,将ECG样本分类。 Introduction 为了从...
阅读(103) 评论(0)
30条 共2页1 2 下一页 尾页
    个人资料
    • 访问:8001次
    • 积分:370
    • 等级:
    • 排名:千里之外
    • 原创:30篇
    • 转载:0篇
    • 译文:0篇
    • 评论:12条
    最新评论