ACM第一课---数论之欧拉函数

原创 2013年11月05日 22:13:38

欧拉函数

定义

欧拉函数PHI(n)表示的是比n小,并且与n互质的正整数的个数(包括1)。
比如:PHI(1) = 1; PHI(2) = 1; PHI(3) = 2; PHI(4) = 2; ... PHI(9) = 6; ...

通式及其证明

要计算一个正整数n的欧拉函数的方法如下:
1. 将n表示成素数的乘积: n = p1 ^ k1 * p2 ^ k2 * ... * pn ^ kn(这里p1, p2, ..., pn是素数)

2. PHI(n) = (p1 ^ k1 - p1 ^ (k1 - 1)) * (p2 ^ k2 - p2 ^ (k2 - 1)) * ... * (pn ^ kn - pn ^ (kn - 1))
               =n*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);
                  =n*(1-1/p1)*(1-1/p2)....(1-1/pn)



证明过程如下:
1. 容易想到:当n为素数时,PHI(n) = n - 1。因为每个比n小的正整数都和n互素。当n为素数p的k次方时,PHI(n) = p ^ k - p ^ (k - 1)。因为在1到n之间的正整数只有p的倍数和n不互素,这样的数有(p ^ k / p)个。
(第二步的证明没看太明白,还希望懂的人讲解一下)。。。。

2. 如果m和n互素,即GCD(m, n) = 1,那么PHI(m * n) = PHI(m) * PHI(n)。用中国剩余定理可以证明,证明的思路是建立这样一种一一对应的关系(a, b) <-> x,其中正整数a小于m并且gcd(a, m) = 1,正整数b小于n并且gcd(b, n) = 1,正整数x小于m*n并且gcd(m*n, x) = 1。证明过程如下:
    1)根据中国剩余定理,如果m和n互素,那么关于未知量x的方程组x % m = a, x % n = b(0 <= a < m, 0 <= b < n),当0 <= x < m * n时存在并且仅存在一个解。容易证明,如果两个这样的方程组有相同的m, n但是a, b不同,那么他们的解x一定不同。
    2)首先用反正法证明:gcd(m, a) = 1且gcd(n, b) = 1是gcd(m*n, x) = 1的必要条件:假设gcd(a, m) = k > 1,由此可得:a = a' * k; m = m' * k => x = k' * m + a = k' * k * m' + k * a' = k * (k' * m' + a'); 所以gcd(x, m) = k > 1。同理可证,如果gcd(b, n) > 1, 那么gcd(x, n) > 1。所以x和m * n互素的必要条件是a和m互诉且b和n互素。
    3)接下来我们证明充分性:由x % m = a 可以得到x = k * m + a;由欧几里德算法求最大公约数的过程(就不证明了,呵呵,还得想)可以知道gcd(x, m) = gcd(m, a) = 1;同理可得,如果gcd(n, b) = 1那么gcd(x, n) = 1。接下来很容易得到:gcd(m*n, x) = 1。从而证明了充分性。
    4)上面三步的结论表明,数对(a, b)是可以和x建立起一一对应的关系的,所以有多少个不同的(a, b),就有多少个不同的x。
3.将n分解成素数乘积后,显然对于任意的i, j(i != j)都满足 pi ^ ki和pj ^ kj是互素的,于是可以的到上面的公式。

跟据上面的公式,可以得到关于欧拉函数的递推关系:
假设数p能整除n,那么
如果p还能整除n / p, 即是若(N%p == 0 && (N/p) % p ==0 )PHI(n) = PHI(n / p) * p;
如果p不能整除n / p, 即是若 (N%p == 0 && (N/p) % p != 0)  PHI(n) = PHI(n / p) * (p - 1);

算法实现

先回顾筛法
(主要可参考上篇)
for(i=2;i<=1000000;i++)
    {
        if(!c[i])prime[len++]=i;
        for(j=0;j<len&&prime[j]*i<=1000000;j++)
        {
            c[prime[j]*i]=1;//不是质数
            if(i%prime[j]==0)break; //                                 
            }                  
        }    
    }

然后便是求解欧拉函数
phi[1] = 1;
    for (i = 2; i < 10000; i++) {
        if (!mark[i]) {
            phi[i] = i - 1;
            continue;
        }
        for (j = 0; j < size && prime[j] * prime[j] <= i; j++) {
            if (i % prime[j] == 0) {
                if (i / prime[j] % prime[j] == 0)
                    phi[i] = prime[j] * phi[i / prime[j]];
                else
                    phi[i] = (prime[j] - 1) * phi[i / prime[j]];
                break;
            }
        }
    }


总结

表示真心不好理解.所以,暂时只能先记忆,做做题目。
可能就会理解吧

【未完待续】........

Matlab中的有限域计算

在这篇文章中,我们先简单介绍有限域的基础知识,然后介绍Matlab中几个与有限域计算相关的函数....
  • u010450214
  • u010450214
  • 2016年02月10日 00:20
  • 3935

欧拉函数(模板)

欧拉函数介绍:           欧拉函数,在数论中用于求解 [ 1 , n ] 中与 n  互质数个数 的函数,因为研究者为欧拉,故命名为欧拉函数。       通式:φ(x) = x(1-1/p...
  • lh__huahuan
  • lh__huahuan
  • 2015年07月25日 11:58
  • 1285

欧拉 phi 函数代码

今天看算法导论 ,看到欧拉 phi 函数,发现可以对之前写过的代码进行优化,所以重写了一次代码。欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) ...
  • Rappy
  • Rappy
  • 2007年08月16日 23:30
  • 3427

ACM第一课---数论之欧拉函数

欧拉函数 定义 欧拉函数PHI(n)表示的是比n小,并且与n互质的正整数的个数(包括1)。 比如:PHI(1) = 1; PHI(2) = 1; PHI(3) = 2; PHI(4)...
  • hu1020935219
  • hu1020935219
  • 2013年11月05日 22:13
  • 6292

欧拉函数(数论)

欧拉函数的定义:对正整数n,欧拉函数是小于等于n的数中与n互质的数的数目。 我们令f(n)为欧拉函数 (1).其中当n=1时,f(1)=1,没有任何实质的意义。 (2).特别的如果两个素数...
  • xiaosshhaa
  • xiaosshhaa
  • 2016年09月21日 21:56
  • 336

数论的欧拉定理证明 &amp; 欧拉函数公式

欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) 。 完全余数集合:定义小于 n 且和 n 互质的数...
  • hillgong
  • hillgong
  • 2009年05月25日 14:56
  • 17485

The Euler function【欧拉函数】

The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other...
  • R1986799047
  • R1986799047
  • 2015年09月04日 18:34
  • 311

HDOJ The Euler function 2824【欧拉函数】

The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe...
  • ydd97
  • ydd97
  • 2015年07月31日 17:29
  • 858

欧拉函数及其申引证明

1,概念         在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。此函数以其首名研究者欧拉命名(Euler'so totient function),它...
  • chen_YongZu
  • chen_YongZu
  • 2017年04月07日 23:51
  • 305

ACM:数论专题(5)——欧拉函数

题目描述:     定义函数φ(k)表示数字1...(k-1)中,和k互质的数字的个数。要求给定区间[L, R],找出在[L,R]范围内,φ(k)值最小的数字,如果有多个数字存在最小值,那么输出数...
  • octopusflying
  • octopusflying
  • 2016年05月13日 22:08
  • 591
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:ACM第一课---数论之欧拉函数
举报原因:
原因补充:

(最多只允许输入30个字)