python mock基本使用

在前后台共同进行一个项目的时候常会遇到一种情景, 后台定义好接口,前端按照接口进行开发, 当前端开发完成后台接口却还没有开发完成, 这个时候要进行接口测试, 只能等后台开发完成才能测试, 在这中间浪费了很多时间,  现在有个利器可以解决这个问题, 即使不用后台,只要提前制定好接口的报文,那么前端就可以自己模拟接口来进行接口测试了, 今天要讲的东西就是mockjax和mockJSON

===============================

比如,可能我们正在写一个社交软件并且想测试一下“发布到Facebook的功能”,但是我们不希望每次运行测试集的时候都发布到Facebook上。

Python的unittest库中有一个子包叫unittest.mock——或者你把它声明成一个依赖,简化为mock——这个模块提供了非常强大并且有用的方法,通过它们可以模拟或者屏敝掉这些不受我们希望的方面。

==============================================

什么是mock?

mock在翻译过来有模拟的意思。这里要介绍的mock是辅助单元测试的一个模块。它允许您用模拟对象替换您的系统的部分,并对它们已使用的方式进行断言。

 

Python2.x 中 mock是一个单独模块,需要单独安装。

> pip install -U mock

Python3.x中,mock已经被集成到了unittest单元测试框架中,所以,可以直接使用。

 

  可能你和我初次接触这个概念的时候会有这样的疑问:把要测的东西都模拟掉了还测试什么呢?

  但在,实际生产中的项目是非常复杂的,对其进行单元测试的时候,会遇到以下问题:

  • 接口的依赖
  • 外部接口调用
  • 测试环境非常复杂

  单元测试应该只针对当前单元进行测试所有的内部或外部的依赖应该是稳定的已经在别处进行测试过的.使用mock 就可以对外部依赖组件实现进行模拟并且替换掉从而使得单元测试将焦点只放在当前的单元功能。

 

 

简单的例子                                                        

我们先从最简单例子开始。

modular.py

复制代码
#modular.py

class Count():

    def add(self):
        pass
复制代码

这里要实现一个Count计算类,add() 方法要实现两数相加。但,这个功能我还没有完成。这时就可以借助mock对其进行测试。

mock_demo01.py

复制代码
from unittest import mock
import unittest

from modular import Count

# test Count class
class TestCount(unittest.TestCase):

    def test_add(self):
        count = Count()
        count.add = mock.Mock(return_value=13)
        result = count.add(8,5)
        self.assertEqual(result,13)


if __name__ == '__main__':
    unittest.main()
复制代码

  count = Count()

  首先,调用被测试类Count() 

 

  count.add = mock.Mock(return_value=7)

  通过Mock类模拟被调用的方法add()方法,return_value 定义add()方法的返回值。

 

  result = count.add(2,5)

  接下来,相当于在正常的调用add()方法,传两个参数25,然后会得到相加的结果7。然后,7的结果是我们在上一步就预先设定好的。

 

  self.assertEqual(result,7)

  最后,通过assertEqual()方法断言,返回的结果是否是预期的结果7

   运行测试结果:

复制代码
> python3 mock_demo01.py
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK
复制代码

这样一个用例就在mock的帮助下编写完成,并且测试通过了。

 

 

完成功能测试                                                     

   再接下来完成module.py文件中add()方法。

复制代码
#module.py

class Count():

    def add(self, a, b):
        return a + b
复制代码

  然后,修改测试用例:

复制代码
from unittest import mock
import unittest
from module import Count


class MockDemo(unittest.TestCase):

    def test_add(self):
        count = Count()
        count.add = mock.Mock(return_value=13, side_effect=count.add)
        result = count.add(8, 8)
        print(result)
        count.add.assert_called_with(8, 8)
        self.assertEqual(result, 16)

if __name__ == '__main__':
    unittest.main()
复制代码

   count.add = mock.Mock(return_value=13, side_effect=count.add)

  side_effect参数和return_value是相反的。它给mock分配了可替换的结果,覆盖了return_value。简单的说,一个模拟工厂调用将返回side_effect值,而不是return_value

  所以,设置side_effect参数为Countadd()方法,那么return_value的作用失效。

 

  result = count.add(8, 8)

  print(result)

  这次将会真正的调用add()方法,得到的返回值为168+8)。通过print打印结果。

 

  assert_called_with(8,8)

  检查mock方法是否获得了正确的参数。

 

 

解决测试依赖                                                     

    前面的例子,只为了让大家对mock有个初步的印象。再接来,我们看看如何mock方法的依赖。

  例如,我们要测试A模块,然后A模块依赖于B模块的调用。但是,由于B模块的改变,导致了A模块返回结果的改变,从而使A模块的测试用例失败。其实,对于A模块,以及A模块的用例来说,并没有变化,不应该失败才对。

  这个时候就是mock发挥作用的时候了。通过mock模拟掉影响A模块的部分(B模块)。至于mock掉的部分(B模块)应该由其它用例来测试。

复制代码
# function.py
def add_and_multiply(x, y):
    addition = x + y
    multiple = multiply(x, y)
    return (addition, multiple)


def multiply(x, y):
    return x * y
复制代码

    然后,针对 add_and_multiply()函数编写测试用例。func_test.py

复制代码
import unittest
import function


class MyTestCase(unittest.TestCase):

    def test_add_and_multiply(self):
        x = 3
        y = 5
        addition, multiple = function.add_and_multiply(x, y)
        self.assertEqual(8, addition)
        self.assertEqual(15, multiple)


if __name__ == "__main__":
    unittest.main()
复制代码

 运行结果:

复制代码
>  python3 func_test.py
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK
复制代码

  

  目前运行一切正确常,然而,add_and_multiply()函数依赖了multiply()函数的返回值。如果这个时候修改multiply()函数的代码。

……
def multiply(x, y):
    return x * y + 3

  这个时候,multiply()函数返回的结果变成了x*y3

  再次运行测试:

复制代码
>  python3 func_test.py                                                   
F                                                                       
======================================================================  
FAIL: test_add_and_multiply (__main__.MyTestCase)                       
----------------------------------------------------------------------  
Traceback (most recent call last):                                      
  File "fun_test.py", line 19, in test_add_and_multiply                 
    self.assertEqual(15, multiple)                                      
AssertionError: 15 != 18                                                
                                                                        
----------------------------------------------------------------------  
Ran 1 test in 0.000s                                                    
                                                                        
FAILED (failures=1)   
复制代码

  测试用例运行失败了,然而,add_and_multiply()函数以及它的测试用例并没有做任何修改,罪魁祸首是multiply()函数引起的,我们应该把 multiply()函数mock掉。

复制代码
import unittest
from unittest.mock import patch
import function


class MyTestCase(unittest.TestCase):

    @patch("function.multiply")
    def test_add_and_multiply2(self, mock_multiply):
        x = 3
        y = 5
        mock_multiply.return_value = 15
        addition, multiple = function.add_and_multiply(x, y)
        mock_multiply.assert_called_once_with(3, 5)

        self.assertEqual(8, addition)
        self.assertEqual(15, multiple)


if __name__ == "__main__":
    unittest.main()
复制代码

  @patch("function.multiply")

  patch()装饰/上下文管理器可以很容易地模拟类或对象在模块测试。在测试过程中,您指定的对象将被替换为一个模拟(或其他对象),并在测试结束时还原。

  这里模拟function.py文件中multiply()函数。

 

  def test_add_and_multiply2(self, mock_multiply):

  在定义测试用例中,将mockmultiply()函数(对象)重命名为 mock_multiply对象。

 

  mock_multiply.return_value = 15

  设定mock_multiply对象的返回值为固定的15

 

  ock_multiply.assert_called_once_with(3, 5)

  检查ock_multiply方法的参数是否正确。

 

  再次,运行测试用例,通过!

 

---------------------------------------------------

参考:

http://engineroom.trackmaven.com/blog/making-a-mockery-of-python/

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值