LightOJ 1045 I - Digits of Factorial

转载 2016年06月02日 00:43:35

Description
Factorial of an integer is defined by the following function

f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)

So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.

In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.

Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.

Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.

Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.

Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Sample Output
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1

题意:n!的m进制一共多少位————————————-
想到了怎么预处理,可惜没想到对数这个工具orz
log(n!) = log(n)+log(n-1) + log(n-2) +…+log(2)
例子:4!=24,24是十进制的2位,因为>10,5!=120,是十进制的3位,因为>100,所以直接对数化
反思:当题目要求求位数的时候应该要想到对数这个工具。

log(i)为自然对数

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <cstdlib>
using namespace std;
const int N=1000005;
double num[N];
int main (void)
{
    int t,cas=0;
    for(int i=1;i<=N-1;i++)
    {
        num[i]=num[i-1]+log(i);
    }
    cin>>t;
    while(t--)
    {
        int n,base;
        cas++;
        scanf("%d %d",&n,&base);
        int ans;
        ans=floor(num[n]/log(base)+1);//floor向下取整
        //事实证明不用floor也行
        printf("Case %d: %d\n",cas,ans);
    }
    return 0;
}

LightOJ 1045 - Digits of Factorial (k进制下N!的位数)

1045 - Digits of Factorial   PDF (English) Statistics Forum ...
  • helloiamclh
  • helloiamclh
  • 2016年02月08日 17:17
  • 476

LightOJ 1045 Digits of Factorial

1045 - Digits of Factorial     PDF (English) Statistics Forum Time Limi...
  • yao1373446012
  • yao1373446012
  • 2016年09月11日 10:14
  • 125

LightOJ 1045 Digits of Factorial

基础数论,可以Stirling公式,我是打的表 #include #include double fac[1000005] = {0, 0}; void init() { for(in...
  • qq_25884463
  • qq_25884463
  • 2015年11月25日 21:33
  • 128

LightOJ - 1045 Digits of Factorial

阶乘
  • nameofcsdn
  • nameofcsdn
  • 2016年08月18日 23:34
  • 1397

lightoj 1045 - Digits of Factorial

1045 - Digits of Factorial     PDF (English) Statistics Forum Time Limi...
  • z2664836046
  • z2664836046
  • 2016年08月22日 21:46
  • 108

lightoj 1045 Digits of Factorial (数学)

求N的阶乘在base进制下是几位数。 所有进制中,base^m+c=n    m是一个阶数,c是一个小于base^m的常数,n是目标数字。      如  10^2+23=123         故可...
  • w419387229
  • w419387229
  • 2017年10月05日 12:20
  • 33

LightOJ 1045 - Digits of Factorial 简单数论

题目:http://www.lightoj.com/volume_showproblem.php?problem=1045题意:给定两个数n m,求n!化为m进制后有多少位数字思路:log10(n!)...
  • discreeter
  • discreeter
  • 2016年11月24日 19:16
  • 133

lightoj 1045 - Digits of Factorial 【数学】

题目链接:lightoj 1045 - Digits of Factorial 1045 - Digits of Factorial PDF (English) Statist...
  • chenzhenyu123456
  • chenzhenyu123456
  • 2016年05月01日 17:01
  • 473

lightOJ 1045 Digits of Factorial (数位计数)

题目分析 首先我们知道log(a∗b)=log(a)+log(b)log(a*b) = log(a)+log(b),那么很明显如果是在k进制下n的阶乘,那么位数为lognk!+1=log1k+lo...
  • chen_ze_hua
  • chen_ze_hua
  • 2017年01月15日 16:40
  • 99

lightoj 1045 - Digits of Factorial 取对数

题意:求n!的长度。 题解:我们需要知道log10(n)=a+b(a是整数,b是小于1的小数)。则a是n在十进制下的长度-1。为什么?根据性质就可以推出来,10^(a+b)=10^a*10^b,10...
  • a601025382s
  • a601025382s
  • 2013年10月22日 13:17
  • 969
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:LightOJ 1045 I - Digits of Factorial
举报原因:
原因补充:

(最多只允许输入30个字)