关闭

线性保角变换

1183人阅读 评论(0) 收藏 举报
分类:
图像变形之线性保角变换
     线性保角变换(Linear Conformal Transformation)是一种几何形状不变的变换。这种图像变形包括旋转,缩放和平移等。线性保角变换是仿射变换的子集,两者都是常见的空间图像变形。
        下图首先给出了一幅旋转角度为45度,缩放系数为1.5,平移系数为0的线性保角变换的结果:

图1:线性保角变换
        从上图可以看出线性保角变换可以看做是一种带缩放的旋转操作。由于平移(垂直方向,水平方向)只是改变图像的几何位置,这里没有体现出来。在图1中,假设原始图像中某一点的坐标为:(w,z),线性保角变换后的图像坐标为(x,y),那么有如下的图像变形公式:
                                                                                            (1)
        这里T就是变形矩阵,图1中,线性保角变换的变形矩阵T有如下形式:
,其中x,y是水平平移系数和垂直平移系数。这是线性保角变换的一般格式,角度和缩放倍数可以修改,由于图1中的线性保角变换没有对图像执行平移操作,也就是说x,y的值是0。即变形矩阵为:

        下面我们可以看看仅有旋转时的效果,如下图所示:
图2:图像旋转
        可以将图像旋转看做是图像线性保角度变换的子集,图2中图像像旋转的变形矩阵为:
,为了理解图像变形的变形矩阵为何是这种方式,我们可以将空域坐标转化到极坐标。如下图所示:
                                                              
                                                                 图3:极坐标系对照图
        在极坐标系中,旋转之前的点(w,z)表示为:
       




                                                    

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:29435次
    • 积分:418
    • 等级:
    • 排名:千里之外
    • 原创:10篇
    • 转载:1篇
    • 译文:0篇
    • 评论:20条
    最新评论