Linked List Cycle II

Given a linked list, return the node where the cycle begins. If there is no cycle, return null

Follow up:

Can you solve it without using extra space?

给定一个链表的头指针,问你能不能只用常数的空间快速判断一个链表是不是有环,如果有环,返回环的起始位置。

eg:比如 A->B->C->D->E->C返回C的指针

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.       
    }
};

对于判断链表是否有环,方法很简单,用两个指针,一开始都指向头结点,一个是快指针,一次走两步,一个是慢指针,

一次只走一步,当两个指针重合时表示存在环了。

证明:假设链表有环,环的长度为N,慢指针在起始位置,快指针在位置k(位置从0开始计数),那么快指针只要比慢指针

多走经过N-k步,就可以追上慢指针了。。。,因为每一次快指针都比慢指针多走一步,所以一定可以在有限的步数追上慢指针。

现在的问题是如何求出环的起始位置,我们先给出结论:当快指针和慢指针重合的时候,把一个指针重新指向头指针,两个指针

现在速度一样,一次走一步,那么当两个指针值相同时,所在的指针就是我们要找的起始位置。

证明内容来自一个国外的网站:http://umairsaeed.com/2011/06/23/finding-the-start-of-a-loop-in-a-circular-linked-list/

要证明上面这个结论,我们先证明一个结论,假设慢指针Slow停在环的起始位置时,快指针Fast停在第k个位置,那么两个指针相

遇时会停在从起始位置倒数第k个位置,也就是n-k这个位置。从Slow停在环的起始位置,假设最终停在n-x相遇。

因为Fast只要再比Slow多走n-k步,就可以追上Slow,而每一次操作Fast都比Slow多走一步,因为只需要再走n-k步就可以追上Slow,

此时Slow停在n-k这个位置。这意味着,如果Slow从环的起始位置,Fast从环的第k个位置开始,最终两个指针会在n-k这个位置相遇(n为环的长度)

假设一开始Fast和Slow从开始位置开始遍历这个链表。


令m = 3,表示经过三步,Slow结点到达环的起始位置,此时Fast在环的第m个位置,因为Fast比Slow多走了m步


根据刚才的结论,当Slow停在起始位置,Fast停在m位置,两个链表最后会在n-m位置相遇


此时把Slow移到头结点位置,两个结点都是要经过m步,才刚刚好到达环的起始位置。


这里好起来好像m小于环的长度l,才成立。其实是一样的。

假设m = t*l+k

这就是说,环最终停在n-k这个位置了。还需要k步就可以到达环的起始结点。而把Slow结点重新设置为头结点,则需要t*l+k步才第一次到达环的起始结点,

但是注意了,多走了k*l步,Fast结点还是会停在环的起始位置的。

得证!!!

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *detectCycle(ListNode *head) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        if(head==NULL)return NULL;
        if(head->next==NULL)return NULL;
        if(head->next->next==NULL)return NULL;
        ListNode *pre = head->next;
        ListNode *nxt = pre->next;
        while(1){
            if(pre==nxt)break;
            if(pre->next==NULL)return NULL;
            pre = pre->next;
            if(nxt->next==NULL)return NULL;
            nxt = nxt->next;
            if(nxt->next==NULL)return NULL;
            nxt = nxt->next;
        }
        pre = head;
        while(pre!=nxt){
            pre = pre->next;
            nxt = nxt->next;
        }
        return pre;
    }
};

和室友大神lyc交流,大神的想了一会,秒了= =!

大神的解释是这样的:假设环的长度为l,从开始到两个指针第一次相遇总共走了m步,那么Fast指针走了2*m步,Slow指针走了m步,

Fast比Slow多走了m步,Fast比Slow多走了x圈,那么有x*l==m,l是m的一个因子。那么Fast移到开头位置,再走m步,两个指针每次

走一步,Slow走了m步停在第一次相遇位置,Fast因为也是每次走一步,所以也会停在相遇位置,而且可以看出来,一旦Fast进入环,Fast

和Slow结点就保持相对静止了。。。碉堡了。。川哥

1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值