tensorflow构建RNN识别mnist手写数字

原创 2017年06月22日 13:50:04
#coding:utf-8
import tensorflow as tf
import input_data

#加载mnist数据集
mnist = input_data.read_data_sets('mnist/',one_hot=True)

#定义参数
learning_rate = 0.01
epochs = 50000
batch_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10

xs = tf.placeholder(tf.float32,[None,n_steps,n_inputs]) #输入形状
ys = tf.placeholder(tf.float32,[None,n_classes])

#定义weights和biases
weights = {
    "in":tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
    "out":tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
}

biases = {
    "in":tf.Variable(tf.constant(0.1,shape = [1,n_hidden_units])),
    "out":tf.Variable(tf.constant(0.1,shape = [1,n_classes]))
}

def RNN(inputs,weights,biases):
    #将输入(128,28,28)维度变换(batch_size,n_inputs,n_steps)
    x = tf.reshape(inputs,[-1,n_inputs]) #x(128*28,28)
    x_in = tf.matmul(x,weights['in'])+biases['in'] #x_in(128*28,128)
    #将数据维度变换
    x_in = tf.reshape(x_in,[-1,n_steps,n_hidden_units]) #x_in(128,28,128)
    #定义RNN的cell
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units,forget_bias=1.0) #设置初始biases = 1
    _init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32) #初始化state
    #计算RNN
    outputs,states = tf.nn.dynamic_rnn(lstm_cell,x_in,initial_state=_init_state,time_major=False)
    #输出
    outputs = tf.unpack(tf.transpose(outputs,[1,0,2]))
    results = tf.matmul(outputs[-1],weights['out'])+biases['out']
    return results

prediction = RNN(xs,weights,biases)
#计算softmax层的cross_entropy
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction,ys))
#梯度下降
train = tf.train.AdamOptimizer(learning_rate).minimize(cost)

true_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(ys,1))
accuracy = tf.reduce_mean(tf.cast(true_pred,tf.float32))

#初始化
init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)
    step = 0
    while step*batch_size < epochs:
        batch_xs,batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size,n_steps,n_inputs])
        sess.run(train,feed_dict={xs:batch_xs,ys:batch_ys})
        if step % 50 ==0:
            print(sess.run(cost,cost,feed_dict={xs:batch_xs,ys:batch_ys}))
        step += 1
    print(sess.run(accuracy,cost,feed_dict={xs:batch_xs,ys:batch_ys}))

rnn对mnist数据集分类

结果

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

基于tensorflow的MNIST手写数字识别(三)--神经网络篇

想想还是要说点什么 抱歉啊,第三篇姗姗来迟,确实是因为我懒,而不是忙什么的,所以这次再加点料,以表示我的歉意。废话不多说,我就直接开始讲了。加入神经网络的意义 * 前面也讲到了,使...
  • wlmnzf
  • wlmnzf
  • 2016年06月17日 00:46
  • 3786

深度学习笔记——TensorFlow学习笔记(三)使用TensorFlow实现的神经网络进行MNIST手写体数字识别

本文是TensorFlow学习的第三部分,参考的是《TensorFlow实战Google深度学习框架》一书,这部分讲述的是使用TensorFlow实现的神经网络进行MNIST手写体数字识别一个实例。 ...
  • mpk_no1
  • mpk_no1
  • 2017年06月04日 00:20
  • 1761

TensorFlow学习_02_CNN卷积神经网络_Mnist手写数字识别

github地址:https://github.com/lawlite19/MachineLearning_TensorFlow 或者上一篇Tensorflow的博客:http://blog.csdn...
  • u013082989
  • u013082989
  • 2016年12月16日 16:54
  • 2816

tensorflow-mnist手写数字识别

  • 2017年04月14日 23:27
  • 11.06MB
  • 下载

Tensorflow - Tutorial (7) : 利用 RNN/LSTM 进行手写数字识别

1. 常用类class tf.contrib.rnn.BasicLSTMCellBasicLSTMCell 是最简单的一个LSTM类,没有实现clipping,projection layer,pee...
  • u010089444
  • u010089444
  • 2017年03月10日 15:34
  • 10711

Tensorflow-mnist 手写数字识别

1.加载数据MNIST_data,按照tensorflow官网的: import input_data mnist = input_data.read_data_sets("MNIST_data...
  • weixin_37294079
  • weixin_37294079
  • 2018年01月12日 17:42
  • 11

基于Tensorflow, OpenCV. 使用MNIST数据集训练卷积神经网络模型,用于手写数字识别

基于Tensorflow,OpenCV使用MNIST数据集训练卷积神经网络模型,用于手写数字识别ocr.py一个单层的神经网络,使用MNIST训练,识别准确率较低cnn_ocr.py两层的卷积神经网络...
  • SugarAnnie
  • SugarAnnie
  • 2017年10月30日 11:23
  • 238

Tensorflow系列之(二):详解CNN识别MNIST手写数字集

在前面的文章中,我们介绍了怎么用Python自己实现一个简单的神经网络,来实现MNIST的手写数字集。现在我们尝试这用Tensorflow来实现一个稍微复杂一些的卷积神经网络...
  • superCally
  • superCally
  • 2017年01月18日 15:49
  • 1032

机器学习Tensorflow基于MNIST数据集识别自己的手写数字(读取和测试自己的模型)

废话不多说,先上效果图 整体来看,效果是非常不错的,模型的训练,参照官方代码mnist_deep.py,准确率是高达99.2% 那么,我是怎么实现的呢? 一.读懂卷积神经网络代码...
  • qq_38269418
  • qq_38269418
  • 2018年01月06日 21:19
  • 46

《学习Tensorflow》——MNIST手写数字识别

PyCharm2016.3.2+Anaconda3+Python3.5+CUDA8.0.44+cudnn5
  • hujingshuang
  • hujingshuang
  • 2017年03月13日 20:43
  • 1457
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tensorflow构建RNN识别mnist手写数字
举报原因:
原因补充:

(最多只允许输入30个字)