tensorflow构建RNN识别mnist手写数字

原创 2017年06月22日 13:50:04
#coding:utf-8
import tensorflow as tf
import input_data

#加载mnist数据集
mnist = input_data.read_data_sets('mnist/',one_hot=True)

#定义参数
learning_rate = 0.01
epochs = 50000
batch_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10

xs = tf.placeholder(tf.float32,[None,n_steps,n_inputs]) #输入形状
ys = tf.placeholder(tf.float32,[None,n_classes])

#定义weights和biases
weights = {
    "in":tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
    "out":tf.Variable(tf.random_normal([n_hidden_units,n_classes]))
}

biases = {
    "in":tf.Variable(tf.constant(0.1,shape = [1,n_hidden_units])),
    "out":tf.Variable(tf.constant(0.1,shape = [1,n_classes]))
}

def RNN(inputs,weights,biases):
    #将输入(128,28,28)维度变换(batch_size,n_inputs,n_steps)
    x = tf.reshape(inputs,[-1,n_inputs]) #x(128*28,28)
    x_in = tf.matmul(x,weights['in'])+biases['in'] #x_in(128*28,128)
    #将数据维度变换
    x_in = tf.reshape(x_in,[-1,n_steps,n_hidden_units]) #x_in(128,28,128)
    #定义RNN的cell
    lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(n_hidden_units,forget_bias=1.0) #设置初始biases = 1
    _init_state = lstm_cell.zero_state(batch_size,dtype=tf.float32) #初始化state
    #计算RNN
    outputs,states = tf.nn.dynamic_rnn(lstm_cell,x_in,initial_state=_init_state,time_major=False)
    #输出
    outputs = tf.unpack(tf.transpose(outputs,[1,0,2]))
    results = tf.matmul(outputs[-1],weights['out'])+biases['out']
    return results

prediction = RNN(xs,weights,biases)
#计算softmax层的cross_entropy
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(prediction,ys))
#梯度下降
train = tf.train.AdamOptimizer(learning_rate).minimize(cost)

true_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(ys,1))
accuracy = tf.reduce_mean(tf.cast(true_pred,tf.float32))

#初始化
init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)
    step = 0
    while step*batch_size < epochs:
        batch_xs,batch_ys = mnist.train.next_batch(batch_size)
        batch_xs = batch_xs.reshape([batch_size,n_steps,n_inputs])
        sess.run(train,feed_dict={xs:batch_xs,ys:batch_ys})
        if step % 50 ==0:
            print(sess.run(cost,cost,feed_dict={xs:batch_xs,ys:batch_ys}))
        step += 1
    print(sess.run(accuracy,cost,feed_dict={xs:batch_xs,ys:batch_ys}))

rnn对mnist数据集分类

结果

这里写图片描述

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

tensorflow-mnist手写数字识别

  • 2017年04月14日 23:27
  • 11.06MB
  • 下载

Tensorflow - Tutorial (7) : 利用 RNN/LSTM 进行手写数字识别

1. 常用类class tf.contrib.rnn.BasicLSTMCellBasicLSTMCell 是最简单的一个LSTM类,没有实现clipping,projection layer,pee...

《学习Tensorflow》——MNIST手写数字识别

PyCharm2016.3.2+Anaconda3+Python3.5+CUDA8.0.44+cudnn5

基于tensorflow的MNIST手写数字识别--入门篇

一、卷积神经网络模型知识要点卷 卷积卷积 一、卷积神经网络模型知识要点卷 1、卷积 2、池化 3、全连接 4、梯度下降法 5、softmax 本次就是用最简...

TensorFlow学习_02_CNN卷积神经网络_Mnist手写数字识别

github地址:https://github.com/lawlite19/MachineLearning_TensorFlow 或者上一篇Tensorflow的博客:http://blog.csdn...

基于tensorflow的MNIST手写数字识别(三)--神经网络篇

想想还是要说点什么 抱歉啊,第三篇姗姗来迟,确实是因为我懒,而不是忙什么的,所以这次再加点料,以表示我的歉意。废话不多说,我就直接开始讲了。加入神经网络的意义 * 前面也讲到了,使...
  • wlmnzf
  • wlmnzf
  • 2016年06月17日 00:46
  • 3458

Deep Learning-TensorFlow (1) CNN卷积神经网络_MNIST手写数字识别代码实现详解

import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import...

Tensorflow系列之(二):详解CNN识别MNIST手写数字集

在前面的文章中,我们介绍了怎么用Python自己实现一个简单的神经网络,来实现MNIST的手写数字集。现在我们尝试这用Tensorflow来实现一个稍微复杂一些的卷积神经网络...

Tensorflow的Helloword:使用简单Softmax Regression模型来识别Mnist手写数字

首先准备数据:import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIS...
  • zjwcdd
  • zjwcdd
  • 2016年09月02日 20:35
  • 686

TensorFlow实现机器学习的“Hello World”--Mnist手写数字识别

TensorFlow实现机器学习的“Hello World”上一篇博客我们已经说了TensorFlow大概怎么使用,这次来说说机器学习中特别经典的案例,也相当于是机器学习的“Hello World”,...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:tensorflow构建RNN识别mnist手写数字
举报原因:
原因补充:

(最多只允许输入30个字)