精选NLP、CV领域论文TOP10(附链接)

转载 2018年02月12日 00:00:00

640?wx_fmt=png

来源:PaperDaily

本文长度为2200字建议阅读6分钟

本文为你盘点近期值得关注的NLP、CV领域相关论文。

自然语言处理

01

Knowledge Graph Embedding: A Survey of Approaches and Applications

@jerryshi 推荐

#Knowledge Graph


本文对当下流行的 Knowledge Graph Eembedding 进行汇总,主要介绍了两大类,Translational Distance Models 和 Semantic Matching Models,简要叙述了每中方式下的算法。最后又给出了 KG Embedding 的一些应用,包括 KG 内部知识补全及外部的关系抽取、QA、推荐等。

论文链接:

https://www.paperweekly.site/papers/1425


02

Parallel WaveNet: Fast High-Fidelity Speech Synthesis

@wuhecong 推荐

#Deep Learning


DeepmMind 17 年 11 月份的论文,wavenet 的改良版本,实现了并行文本转语音。可以和百度的 Deep Voice 3 对比一下。

论文链接

https://www.paperweekly.site/papers/1416


03

Deconvolutional Latent-Variable Model for Text Sequence Matching

@zhangjianhai 推荐

#Sentence Matching


利用 Convolution encoder - Deconvolution decoder 学习句子的语义表示,将 cnn-deconv 框架用于文本匹配任务中,如 Text Entailment、Paraphrase Identification 任务中,generation 和 discriminative 共同训练,提升特定任务的效果。

该论文方法优势是可以利用 unlabeled 数据帮助学习句子表示,当数据不足时非常有效,随着标注数据的增加,优势逐渐减小。

论文链接

https://www.paperweekly.site/papers/1387


04

Exploring the Effectiveness of Convolutional Neural Networks for Answer Selection in End-to-End Question Answering

@longquan 推荐

#QA System


本文尝试探索了从整个端到端问答系统的流程的角度去衡量卷积神经网络对于答案选择任务的有效性。使用的数据集是标准的 TrecQA 数据集。

论文链接

https://www.paperweekly.site/papers/1400


05

Attention-based LSTM for Aspect-level Sentiment Classification

@applenob 推荐

#Sentiment Classification


使用基于 Attention 的 LSTM 解决细粒度的情感分析问题,在 SemEval 2014 上取得 state-of-art 的结果。

论文链接

https://www.paperweekly.site/papers/1359


计算机视觉


06

Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks

@Aidon 推荐

#Neural Networks


文章提出一种加速 DNNs 的新方法(WAE: wavelet-like auto-encoder)来克服现有方法中存在的一个主要问题:如何保证网络加速而又不损失网络性能。


MAE 借助小波的思想,在 encoding 阶段利用 CNNs 分别提取图像的低频分量和高频分量,在 decoding 阶段利用这两个分量恢复出原始图像。


训练好 MAE 之后,可以用于提取图像的低频分量和高频分量,比如在图像分类任务中,将低频分量输入到标准的分类 DNNs(如 VGG-16,ResNet)中,然后与高频分量融合后一起用于分类。


这里提高效率的关键在于,相比于原始图像,提取的低频分量和高频分量都是低分率(原始图像的 1/4)的。

论文链接

https://www.paperweekly.site/papers/1413


07

Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning

@snowwalkerj 推荐

#Face Recognition


在不直接接触模型和训练样本的前提下,只使用极少量的“污染样本”来迷惑模型,达到攻击(伪装)指定类别的目的。攻击者可以通过佩戴特定的装饰来达到把自己伪装成某个特定目标的目的。

论文链接

https://www.paperweekly.site/papers/1384


08

Data Distillation: Towards Omni-Supervised Learning

@corenel 推荐

#Unsupervised Learning


本文来自 Facebook AI Research,提出了一种利用单一模型来 ensemle 不同 encoded features 来进行 self=training 的方法,就结果上来说很不错,值得一看。

论文链接

https://www.paperweekly.site/papers/1380


09

Toward Multimodal Image-to-Image Translation

@duinodu 推荐

#Image-to-image Translation


在很多 image-to-image 问题中,one-to-many 是大部分情况,而一般方法比如 pix2pix,仅仅能产生 one-to-one 的结果,但似乎 one-to-many 更符合常理。比如一张灰色的图,对应的彩色图片应该有很多种方式,不仅仅是一种。


困难在于,GAN 总是会让 G 产生某几种固定的模式输出,而如果简单地在输入加随机噪声,G 会在 D 的判别下,忽略随机噪声的作用,还是会有 mode collapse 问题。


文章提出一种 bicycle 的方式,显式地对隐含变量 z 进行表示,处理 one-to-many 中的 mode collapse 问题。

论文链接

https://www.paperweekly.site/papers/1373


10

Video Object Segmentation with Re-identification

@chenhong 推荐

#Video Object Segmentation


传统的视频分割方法依赖于生成掩膜的时间连续性,但是无法处理目标丢失或目较大的位移等情况。


论文为了克服这些问题,提出视频对象分割与重新识别( Video Object Segmentation with Re-identification,VSReID),包括掩码生成模块和 ReID 模块(Person re-identification,ReID,既给定一个监控行人图像,跨设备检索行人的图像)。


前者通过 flow warping 生成初始化概率图,后者自适应匹配检索丢失的目标实体。通过通过两个模块的迭代应用,本文的模型在 DAVIS-2017 取得冠军,验证了算法的性能。

论文链接

https://www.paperweekly.site/papers/1398

640?wx_fmt=jpeg

2017年度NLP领域论文TOP10(附链接)

来源:PaperWeekly本文共2672字,建议阅读5分钟。本文为大家带来10篇精选的2017度值得阅读的AI论文。历时九天,我们收到了近千份有效读者投票,2017 年度最值得读的 AI 论文评选也...
  • tMb8Z9Vdm66wH68VX1
  • tMb8Z9Vdm66wH68VX1
  • 2018年02月11日 00:00
  • 122

如何检索自然语言处理领域相关论文

如何检索自然语言处理领域相关论文
  • u012442157
  • u012442157
  • 2017年08月27日 19:38
  • 261

初学者如何查阅学术资料---以自然语言处理为例,分析cv领域

初学者如何查阅学术资料---以自然语言处理为例,分析cv领域 (1) 视觉领域会议: cvpr,iccv,eccv,icml,iclr,等 (2) 毋庸置疑arXi...
  • u014114990
  • u014114990
  • 2016年02月25日 14:23
  • 942

ML、CV和AI等领域的一些顶级会议

1、机器学习顶级会议:NIPS, ICML, UAI, AISTATS; (期刊:JMLR, ML, Trends in ML, IEEE T-NN) 2、计算机视觉和图像识别:ICCV, CVP...
  • JIEJINQUANIL
  • JIEJINQUANIL
  • 2015年12月05日 20:55
  • 4111

关于CV方面及部分machine learning方面的会议期刊等级整理

等级查询网站: http://academic.research.microsoft.com/RankList?entitytype=3&topdomainid=2&subdomainid=11&l...
  • jideljd_2010
  • jideljd_2010
  • 2014年06月06日 19:04
  • 1434

2017年深度学习在NLP领域的进展和趋势

本文翻译的是这篇文章 在过去的很多年里,深度学习架构和算法在某些领域,比如图像识别和语音处理,取得了令人印象深刻的进展。 最初,深度学习架构和算法在NLP领域并没能取得大的进展,但是最近深度学...
  • android_ruben
  • android_ruben
  • 2018年01月04日 21:59
  • 723

深度学习在NLP中的应用

1. 引言     文本分类这个在NLP领域是一个很普通而应用很广的课题,而且已经有了相当多的研究成果,比如应用很广泛的基于规则特征的SVM分类器,以及加上朴素贝叶斯方法的SVM分类器,当然还有最大熵...
  • u011500062
  • u011500062
  • 2016年08月17日 10:57
  • 4031

CNN之于CV和NLP

自然语言处理是对一维信号(词序列)做操作,计算机视觉是对二维(图像)或三维(视频流)信号做操作。不同:自然语言处理的输入数据通常是离散取值(例如表示一个单词或字母通常表示为词典中的one hot向量)...
  • u011204487
  • u011204487
  • 2017年08月08日 21:38
  • 304

2017年度最值得读的AI论文 | CV篇 · 评选结果公布

2017 年,这些计算机视觉论文是你心中的最佳么?历时九天,我们收到了近千份有效读者投票,2017 年度最值得读的 AI 论文评选也正式结束。我们根据读者的投票情况,选出了自然语言处理和计算机视觉领域...
  • c9Yv2cf9I06K2A9E
  • c9Yv2cf9I06K2A9E
  • 2018年01月31日 00:00
  • 77

最有影响力的自然语言处理NLP论文

最近有时间我会从前往后阅读nlper这个博客,发现“Most Influential NLP Papers”这篇文章比较有参考价值,不过写于06年初,稍早一些,但是真金不怕火炼,就放在这里供大家参...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年03月10日 12:41
  • 2150
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:精选NLP、CV领域论文TOP10(附链接)
举报原因:
原因补充:

(最多只允许输入30个字)