关闭

判断一个坐标点是否在不规则多边形内部的算法

1835人阅读 评论(0) 收藏 举报
分类:

参考http://www.cnblogs.com/armyfai/p/3529243.html

1,将多边形的坐标存在在一个数组里,首先我们需要取得该数组在横坐标和纵坐标的最大值和最小值,根据这四个值minX,maxX,minY,maxY,算出一个四边形,判断目标点是否在这个四边形内,不满足,直接返回false,证明该目标点不在此多边形内部。

if(m_Pos.x < minX || m_Pos.x > maxX || m_Pos.y < minY || m_Pos.y > maxY)

{

return false;

}


2,然后,在多边形所规定的平面上,随便定义一个点,之后通过该点水平画一条线,数数这条横线和多边形的边相交多少次,看这条横线穿越多边形的次数是否为奇数,若为奇数,那么该目标点在多边形内,若为偶数,则在多边形外。


// vert 代表多边形有几个点,testx, testy 代表待测目标点的坐标,*vertx, *verty分别指向储存多边形横纵坐标数组的首地址

// 每次计算都涉及到相邻的两个点和待测试点,然后考虑两个问题:

// 1 被测试点的纵坐标是否在本次循环所测试的两个相邻点纵坐标范围之内?

// verty[i] < testy < vert[j] 或者 vert[j] < testy < vert[i]

// 2, 待测点是否在i,j两点之间的连线之下?

// 斜率公式,几何和不等式

// 然后每次这两个条件同时满足的时候我们把返回的布尔量取反。

int fun(int vert, float *vertx, float *verty, float testx, float testy) 
{
    int i, j, c = 0;
    for (i = 0, j = vert-1; i < vert; j = i++)
	{
        if ( ( (verty[i]>testy) != (verty[j]>testy) ) &&
			(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[j]-verty[i]) + vertx[i]) )
            c = !c;
    }
    return c;
}





0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:199251次
    • 积分:4833
    • 等级:
    • 排名:第5945名
    • 原创:227篇
    • 转载:380篇
    • 译文:1篇
    • 评论:94条
    博客专栏
    最新评论