LDA主题模型分析网购数据

通过对智能门锁的用户评价数据进行LDA主题建模,分析得出顾客关注点主要集中在客服服务、商品质量、物流效率及产品的便捷性与先进性。价格低于3000的商品抱怨率较低,而接近3000时,顾客对服务与质量的期望提高,导致抱怨增加。价格超过4000的商品满意度则因品牌与质量保证而回升。

原文链接:http://tecdat.cn/?p=2175/

语义透镜

顾客满意度和关注点

我们对于评价数据进行LDA建模,就是从语料库中挖掘出不同主题并进行分析,换言之,LDA提供了一种较为方便地量化研究主题的机器学习方法。

我们使用最大似然估计进行最优化主题个数的选取。当主题个数定为20的时候,似然估计数最大,即留言板数据分为20个主题的可能性比较大。将模型生成的20个主题中的高频词取出。

图表1

22fd1c07a6c9038c7e6059574c9e3383.png

根据各个主题的高频关键词,大概可以将顾客关注点分成5个部分:商家品牌、价格质量、客服师傅、使用便捷性和包装物流。从上图,我们发现用户关注的点主要集中在客服对商品问题的耐心解答,师傅对门锁安装的指导以及包装和物流上。

我们也发现不少顾客的评论反映出智能门锁的便捷性(e.g.不用带钥匙)和先进(e.g.指纹识别度高)。同时我们没有发现安全性相关的高频词汇。

2

顾客抱怨

质量、客服服务和物流

接下来,我们对不同价格和主题的顾客抱怨率进行比较。

图表2

baa52822055a88ea9dca6bf0dd7bfca3.png

从价格方面我们发现价格低于2000的智能门锁购买量最多,同时抱怨率也较高,根据关注点来看,顾客抱怨点主要集中在商品质量和客服的耐心程度。购买量位于第二的价格是高于4000的区间,整体抱怨率最低。购买量位于第三的是2000-3000区间,该区间顾客抱怨点主要集中在商家品牌与物流。最后是3000-4000区间,该区间顾客抱怨点主要集中在价格质量与物流。同时反映出顾客对智能门锁价格有较高心理预期,主要抱怨点在质量、客服服务和物流上。

3

自营非自营

价格和满意度

图表3

e36410cb736ab50b871464e2839652f5.png

从左图可以看出自营和非自营商品在顾客满意度上相差不大,非自营商品的满意度要略高于自营商品。同时可以看到大于4000区间的顾客满意度最高,且都是非自营商品。

从右图中,我们可以看到满意度关于价格的回归预测结果。图中红线表示的是自营商品,在3000以下的区间,价格越高,满意度反而下降,高于3000的区间中,价格越高,满意度越高。在非自营商品中,3000以下的价格区间中,价格和满意度关系不明显,高于3000的价格区间中,价格越高,满意度越高。

从前文中,我们发现价格低于3000的商品抱怨率最低的点在于便捷和使用高效,因此给人的感觉性价高,满意度较高,而价格接近3000时,顾客对客服、物流、质量等预期更高,因此容易成为抱怨的重灾区。当价格接近和高于4000时,商品的品牌、质量往往又得到保证,因此满意度又上升。

点击标题查阅往期内容

python主题LDA建模和t-SNE可视化

Python之LDA主题模型算法应用

R语言社区主题检测算法应用案例

在PYTHON中进行主题模型LDA分析

R语言文本挖掘NASA数据网络分析,tf-idf和主题建模

R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究

python主题建模可视化LDA和T-SNE交互式可视化

主题模型及文本情感分析疫情新闻数据

R语言对NASA元数据进行文本挖掘的主题建模分析

python爬虫进行Web抓取LDA主题语义数据分析报告

更多内容,请点击左下角“阅读原文”查看

c2790e6fccdb98722d771c250093fce7.gif

8664bcc1225e2ff867e97a18c3a3ea57.png

31ba8558c0c54caeabeb86df2ae5f661.jpeg

关注我们

案例精选、技术干货 第一时间与您分享

7f27a802bb18eb88d2b85c359473b185.jpeg

长按二维码加关注

更多内容,请点击左下角“阅读原文”查看

f77b9fce1118cf263f6964a0184c4e56.gif

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值