数据分享|SAS与eviews用ARIMA模型对我国大豆产量时间序列预测、稳定性、白噪声检验可视化...

文章通过SAS和eviews软件对1957年至2009年的大豆产量历史数据进行时间序列ARIMA模型构建,分析数据的平稳性并建立AR(2)模型。经过白噪声检验,预测未来五年中国大豆产量,提出提高产量的建议,强调预测对于经济决策的重要性。

全文链接:http://tecdat.cn/?p=31480

我国以前一直以来都是世界上大豆生产的第一大国。但由于各国的日益强大,导致我国豆种植面积和产量持续缩减。因此,预测我国的大豆产量对中国未来的经济发展有着极其重要的作用点击文末“阅读原文”获取完整代码数据)。

我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于ARIMA的大豆产量预测应用程序,运用SAS与eviews软件对全国1957年到2009年大豆产量的历史数据查看文末了解数据免费获取方式建立时间序列ARIMA模型,通过判断其稳定性与是否通过白噪声检验,建立AR(2)模型。最后,因通过残差白噪声检验,对数据进行分析并预测未来五年的我国的大豆产量。

相关视频

一、问题分析

预测未来5年我国的大豆产量及其发展趋势,对国民经济与人民生活都是百利而无一害的。同时,还可以提前让国家了解未来的情况,及时作出应对措施。

我国的大豆出产量的数据,在此假设所有数据真实可靠(详见下表1),并假设在预测期内不发生任何影响我国的大豆出产量的突发事件。

4b1190056e5eeb6369d7876de52b2fb9.png

difx=dif(x);

year=intnx('year', **'1jan1957'd**,_n_-**1**);

二、模型识别

首先,根据原始数据绘制时间序列图形,观察序列特征。图形如下:

plot x*year difx*year;

dfa60ff18cf762f9a4d9bd1fc2ab825e.png

图1  我国的大豆产量时序图


点击标题查阅往期内容

ed25a013f4ff89d1ccaf483aaef57396.png

Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测

outside_default.png

左右滑动查看更多

outside_default.png

01

3704a27dc7c30a64a5722a6d259837c4.png

02

976c784f08c0d6b7e321ce03ec8839b1.png

03

b6ba32b0a60c0b8614df3c2c7b220681.png

04

ef9bf60db9cde8a1b8090d2b5da3e4f6.png

由原始数据的时间序列图可以看出,资料数据呈现明显的上升趋势,其平均数不稳定,是非平稳序列。

822bd0147854ea06635fa1c341816eee.png

图2 原始序列的自相关图

上图是自相关函数的结果,自相关函数衰减到0的速度缓慢,由此可以再次确定序列是非平稳的。

因为原序列呈现出上升的趋势,故选择1阶差分。1阶差分后的时序图如下所示。

b525bfc93490c8e132b1c6d130583baf.png

图3  1阶差分后的时序图

  由该图可以看出差分后的时间序列在均值附近比较稳定地波动。为了进一步确定平稳性,考察差分后序列的自相关图(如下所示)。

 接下来,我们对差分后的时间序列进行ARMA模型的建立。季节差分后数据的自相关函数如下:

3c0471c469d6075376db36b512633f54.png

图4  1阶差分后的自相关系数图

从上面的分析结果可以看到自相关图显示很强的短期相关性,所以可以初步认为1阶差分后序列平稳。

随后,对1阶差分后序列进行白噪声检验,结果如下图所示。

620728a45a37650a44b8aa157acb25ff.png

图5  1阶差分后白噪声检验图

在检验的显著水平取为0.05时,由于上述所有延迟阶数的P值都小于0.05,所以该差分后的序列不能视为白噪声序列,即差分后序列还蕴藏着不容忽视的相关信息可供提取。

1阶差分后序列的自相关图已经显示该序列自相关系数具有拖尾的性质。再考虑其偏自相关系数的性质(见下图)。

1106cc8a1e317a5221d564e662a8363a.png

图6 偏自相关系数图

根据自相关图和偏自相关图的特点,进行模型的定阶。偏自相关图显示,延迟1阶和2阶的偏自相关系数显著大于2倍标准差范围内波动,其他阶数的偏自相关系数都比较小。通过多方面的考虑,最后认为AR(2)模型为最优模型。接着,综合考虑前面的差分运算,实际上是对原序列拟合模型ARIMA(2,1,0)。

三、参数估计

在此,本文采用最小二乘法来估计参数,得到未知参数的估计值为:

70e641240a997c2fec8d58e831c4cad7.png

f6a784bf6b457e113aa13574629ba61f.png

图7 参数估计图

四、模型确定

由上面的输出结果可知拟合的方程如下:

0185d025f965081c2358fd6f3206ffe8.png

图8 模型拟合结果图

该输出形式等价于

9d43d7fb9a50180d5e01b339c865500a.png

五、模型检验

本文需要检验残差是否有自相关性,由SAS的分析结果得知,不存在自相关性,即残差序列通过白噪声检验。

33ba1fd0fd11b85f1cd5ad245ca30535.png

图9残差白噪声检验

六、模型的预测

本文给出了后面5年的人口自然增长率预测值以及置信区间。

forecast lead=**5** id=year out=out;

1c0edcf95bca424eb4e531185e53c3ba.png

plot x*year=**1** forecast*year=**2** l95*year=**3** u95*year=**3**/overlay;

图10 预测值以及置信区间

53c3a3c867381eb7a8497c36bab5b8d9.png

通过图示可以直观地看出该模型对序列的拟合效果良好。

七、 总结与建议


从对我国大豆出产量的预测值可以看出,大豆的产量会相对提高,不过提高的速率跟之前的相比也不会相差太大。因此,为了提高我国的大豆产量,我提出了以下几点:

1、为大豆生产提供技术支撑。目前我国水稻、玉米和小麦的单产基本位于国际领先水平,大豆单产却与国际水平有较大差距,这也说明提高我国大豆单产还是很有潜力的。所以,我们应该选育和改良大豆品种,为大豆生产提供优良的种质资源。

2、充分利用我国的自然资源,进一步扩大大豆的种植面积,为扩大我国大豆生产规模和优化区域布局提供保障。

3、提高我国大豆在国际市场的竞争优势,以食品的安全性为主打,向外国销售。

八、 参考文献

[1]应用时间序列分析(第三版),王燕 编著  中国人民大学出版社

数据获取

在公众号后台回复“大豆数”,可免费获取完整数据。

d91801ecffb48abc3e9abbc0f61723a3.jpeg

本文中分析的数据分享到会员群,扫描下面二维码即可加群!

177fa20e4b8597fc21f0ca9f3afda2f1.png


983e59c571076a7af2908b832887d496.png

点击文末“阅读原文”

获取全文完整代码数据资料。

本文选自《SAS与eviews用ARIMA模型对我国大豆产量时间序列预测、稳定性、白噪声检验可视化》。

点击标题查阅往期内容

R语言使用ARIMAX预测失业率经济时间序列数据

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据

多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

【视频】时间序列分析:ARIMA-ARCH / GARCH模型分析股票价格

时间序列GARCH模型分析股市波动率

PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化

极值理论 EVT、POT超阈值、GARCH 模型分析股票指数VaR、条件CVaR:多元化投资组合预测风险测度分析

Garch波动率预测的区制转移交易策略

金融时间序列模型ARIMA 和GARCH 在股票市场预测应用

时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据

R语言GARCH建模常用软件包比较、拟合标准普尔SP 500指数波动率时间序列和预测可视化

Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用

MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测

R语言GARCH-DCC模型和DCC(MVT)建模估计

Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列

R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格

R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列

Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

R语言时间序列GARCH模型分析股市波动率

R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

matlab实现MCMC的马尔可夫转换ARMA - GARCH模型估计

Python使用GARCH,EGARCH,GJR-GARCH模型和蒙特卡洛模拟进行股价预测

使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略

R语言用多元ARMA,GARCH ,EWMA, ETS,随机波动率SV模型对金融时间序列数据建模

R语言股票市场指数:ARMA-GARCH模型和对数收益率数据探索性分析

R语言多元Copula GARCH 模型时间序列预测

R语言使用多元AR-GARCH模型衡量市场风险

R语言中的时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格

R语言用Garch模型和回归模型对股票价格分析

GARCH(1,1),MA以及历史模拟法的VaR比较

matlab估计arma garch 条件均值和方差模型

R语言POT超阈值模型和极值理论EVT分析

656c1f8af10ce7b6088b353261a689a6.png

58e33ed19a33068e133cf4273f4630c0.jpeg

26668ebadefe9ccee2b02cf265065801.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值