hdu3652(数位DP)

原创 2013年12月03日 21:22:22

地址:http://acm.hdu.edu.cn/showproblem.php?pid=3652

B-number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1744    Accepted Submission(s): 966


Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
 

Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
 

Output
Print each answer in a single line.
 

Sample Input
13 100 200 1000
 

Sample Output
1 1 2 2
 

题意:求小于等于n的含有13且是13的倍数的数字的个数。

思路:数位dp,开四维数组,第一维表示位数,第二维表示开头数字,第三维表示对13余数,第四维表示是否含有13(1表示有0表示无)。然后就是纯数位dp模板。

代码:

#include<iostream>
#include<cmath>
//#include<vector>
#include<cstdio>
#include<cstring>
//#include<algorithm>
using namespace std;
//#define M 1000000007
int dp[20][20][20][2]= {0};
void getdp()  //打表
{
    int i,j,k,l,s=1;
    dp[0][0][0][0]=1;
    for(i=1; i<=10; i++)
    {
        for(j=0; j<=9; j++)
        {
            for(k=0; k<=9; k++)
            {
                for(l=0; l<13; l++)
                {
                    if(k==3&&j==1)
                        dp[i][j][(l+(j*s)%13)%13][1]+=dp[i-1][k][l][0];
                    else dp[i][j][(l+(j*s)%13)%13][0]+=dp[i-1][k][l][0];
                    dp[i][j][(l+(j*s)%13)%13][1]+=dp[i-1][k][l][1];
                }
            }
        }
        s*=10;
    }
}
int main()
{
    int m,i,j,l;
    getdp();
    while(scanf("%d",&m)>0)
    {
        int len=1,len1[20]= {0},x=1,s=m,cg=0;
        if(m%13==0) cg=1;
        while(m)
        {
            len1[len++]=m%10;
            m/=10;
            x*=10;
        }
        int ans=0,bg=0;
        for(i=len-1; i>=1; i--)
        {
            for(j=0; j<len1[i]; j++)
            {
                ans+=dp[i][j][(13-((s/x)*x)%13)%13][1];
                if(bg||(len1[i+1]==1&&j==3)) ans+=dp[i][j][(13-((s/x)*x)%13)%13][0];  //判断这位是不是13
            }
            if(len1[i]==3&&len1[i+1]==1) bg=1;  //判断是否在前面已出现13
            x/=10;
        }
        if(cg&&bg) ans++;
        printf("%d\n",ans);
    }
    return 0;
}


相关文章推荐

HDU 3652 B-number(数位DP)

题目链接:点击打开链接 题意:给你一个数n, 求从1到n有多少个数满足:包含13这个子串并且可以被13整除。 思路:又是一道典型的数位DP水题, 套路是一样的,  用d[i][last][p][c...

hdu3652(数位dp)

链接:点击打开链接 题意:问1~n中包含序列"13"且能被13整除的数有多少个 代码: #include #include #include #include using namespace ...

HDU 3652 B-number (数位dp)

题意: 求1→n中包含“13”且能被13整除的数字的个数求1\to n中包含“13”且能被13整除的数字的个数 分析: dp[i][s][mod][ok]:=i位,前面是不是1,余数是mod,...
  • lwt36
  • lwt36
  • 2015年10月19日 22:45
  • 206

数位dp专题 (HDU 4352 3652 3709 4507 CodeForces 55D POJ 3252)

数位dp核心在于状态描述,因为阶段很简单。 一般都是求有多少个数,当然也有求平方的变态题。 因为比这个数小的范围定然是从左至右开始小的,那么什么样的前缀对后面子数有相同的结果? HDU 3652...

HDU 3652 B-number (数位DP)

B-number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...

数位DP入门之hdu 3652 B-number

数位DP入门之hdu 3652 B-numberProblem Description A wqb-number, or B-number for short, is a non-negative ...

hdu3652(数位dp)

B-number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...

HDU 3652 B-number(数位DP模板题)

HDU 3652 B-number(数位DP模板题)

hdu3652 B-number 数位dp

B-number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total...

hdu 3652 数位DP 进阶

dp[i][j][k]  i表示数字位数(可以包含前导0,即00054也算5位数),3的余数,k表示状态(状态2为含有“13”,状态1为不含13末尾为1,否则状态为0)  dp表示满足上述i、j、k的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu3652(数位DP)
举报原因:
原因补充:

(最多只允许输入30个字)