PAC Learning Framework可能近似正确学习

原创 2016年05月07日 19:17:29

Coffe Time

ESP GAME用户做游戏的时候,对图片做语义标注

SAmple Complexity:

How many training examples are sufficient to learn the target concept?


Version space
introduction to machine learning: 20 computational learning theory
A hypothesis his consistentwith a set of training examples Dof target concept cif and only if h(x)=c(x) for each training example

PAC Learning Framework可能近似正确学习


PAC 可学习性




版权声明:本文为博主原创文章,未经博主允许不得转载。

【机器学习基础】理解为什么机器可以学习1——PAC学习模型

我们要弱化对学习器的要求: 1、我们不要求学习器输出零错误率的假设,只要求错误率被限制在某常数ε范围内,ε可为任意小。 2、不要求学习器对所有任意抽取的数据都能成功预测,只要求其失败的概率被限定在某个...

PAC-learning 新理解

finite H: agnostic learning:不可知学习 infinite H:
  • mmc2015
  • mmc2015
  • 2015年04月23日 11:03
  • 926

【机器学习基础】理解为什么机器可以学习1——PAC学习模型

我们要弱化对学习器的要求: 1、我们不要求学习器输出零错误率的假设,只要求错误率被限制在某常数ε范围内,ε可为任意小。 2、不要求学习器对所有任意抽取的数据都能成功预测,只要求其失败的概率被限定在某个...

深度学习文章5:使用caffe对自己的图像数据进行训练并测试

使用caffe对自己的图像数据进行训练并测试 之前实践的一些步骤诸如数据集的准备、数据集的转换等过程都是为了训练我们所需要的模型进行铺垫,我们学习caffe的核心目的是使用caffe对我们自己的数...

Foundation of Machine Learning 笔记第四部分 —— Generalities 以及对不一致假设集的PAC学习证明

《Foundation of Machine Learning》笔记第四部分 翻译自书本2.4节。同时增加了对假设集不一致情况的PAC证明...

Foundation of Machine Learning 笔记第一部分——PAC学习框架

本文翻译自《Foundation of Machine Learning》第二章2.1节。 主要内容是定义了PAC学习框架。...

如何正确理解深度学习(Deep Learning)的概念

现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有...

PAC学习理论:机器学习那些事

机器学习是有别于专家系统(基于知识/规则)的一种模式识别方法,与专家系统的构建方法不同,但目的相同。本文分析了一众机器学习方法,并给出了一些机器学习概念的通俗解释。...

学习记录之PAC

投影尽可能分散->方差最大 PCA(主成分分析),其实就是根据数据之间的相关性来降低数据的维度,也就是说删除数据中不必要的,保留必要的。在数据之间或许存在某些变化,能够使数据之间相互转换。 其中需...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:PAC Learning Framework可能近似正确学习
举报原因:
原因补充:

(最多只允许输入30个字)