PAC Learning Framework可能近似正确学习

原创 2016年05月07日 19:17:29

Coffe Time

ESP GAME用户做游戏的时候,对图片做语义标注

SAmple Complexity:

How many training examples are sufficient to learn the target concept?


Version space
introduction to machine learning: 20 computational learning theory
A hypothesis his consistentwith a set of training examples Dof target concept cif and only if h(x)=c(x) for each training example

PAC Learning Framework可能近似正确学习


PAC 可学习性




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

PAC-learning 新理解

finite H: agnostic learning:不可知学习 infinite H:

降维:PCA

一直想总结一下降维的方法,借matchill老师的课,总结一下: PCA: PCA和ICA: 降维方法: 1、神经网络的隐含层...

机器学习物语(4):PAC Learnability

这次我们要介绍的话题是 PAC Learnability ,直译过来就是 PAC 可学习性。可学习性听起来和计算理论里的可计算性是很类似的,当然其实也确实是类似的,而且这里也包含一些计算理论里的内容。...

PAC可学习性

PACPAC可学习性 训练学习器的目标是,能够从合理数量的训练数据中通过合理的计算量可靠的学习到知识。 机器学习的现实情况: 1、除非对每个可能的数据进行训练,否则总会存在多个假设使得真实错误率...
  • TH_NUM
  • TH_NUM
  • 2016-06-02 12:21
  • 1359

Foundation of Machine Learning 笔记第四部分 —— Generalities 以及对不一致假设集的PAC学习证明

《Foundation of Machine Learning》笔记第四部分 翻译自书本2.4节。同时增加了对假设集不一致情况的PAC证明

Foundation of Machine Learning 笔记第一部分——PAC学习框架

本文翻译自《Foundation of Machine Learning》第二章2.1节。 主要内容是定义了PAC学习框架。

如何正确理解深度学习(Deep Learning)的概念

现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有...

【机器学习基础】理解为什么机器可以学习1——PAC学习模型

我们要弱化对学习器的要求: 1、我们不要求学习器输出零错误率的假设,只要求错误率被限制在某常数ε范围内,ε可为任意小。 2、不要求学习器对所有任意抽取的数据都能成功预测,只要求其失败的概率被限定在某个...

学习记录之PAC

投影尽可能分散->方差最大 PCA(主成分分析),其实就是根据数据之间的相关性来降低数据的维度,也就是说删除数据中不必要的,保留必要的。在数据之间或许存在某些变化,能够使数据之间相互转换。 其中需...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)