关闭

Agnostic Learning (不可知学习)

标签: 不可知学习
335人阅读 评论(0) 收藏 举报
分类:

Agnostic Learning (不可知学习)


Computational Learning Theory (Cont.)

The Vapnik-Chervonenkis(VC) dimension

- Shattering a set of instances
- VC dimension

    - Definition and several examples


The Vapnik-Chervonenkis(VC) dimension

  • An unbiased hypothesis spaceis one that shatters the instance space X.
  • Sometimes X cannotbe shattered by H, but a large subset of it can.
  • Definition: The Vapnik-ChervonenkisDimensionVC(H)of hypothesis space Hdefined over instance space X
  • is the size of the largestfinite subset of X shattered by H.
  • if arbitrarily large finite sets of X can be shattered by H, then VC(H)≡∞
  • If we find ONE set of instances of size d that can be shattered, then VC(H) d.
  • To show that VC(H)

VC Dim. Examples (1)

  • Example 1:
    • Instance space X: the set of real numbers
      X = R
    • H is the set of intervals on the real number axis.
    • Form of H is: a < x < b
    • VC(H) = ?



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:67951次
    • 积分:1956
    • 等级:
    • 排名:千里之外
    • 原创:128篇
    • 转载:16篇
    • 译文:0篇
    • 评论:27条
    每个人都是过客,每个人都有故事
    也许深夜往往是人们内心最为脆弱的时刻。孤独,绝望,失意,无奈......这些复杂沉重的情绪会随着黑夜的来临不再躲藏。
    最新评论