# Agnostic Learning (不可知学习)

335人阅读 评论(0)

## Computational Learning Theory (Cont.)

The Vapnik-Chervonenkis(VC) dimension

- Shattering a set of instances
- VC dimension

- Definition and several examples


### The Vapnik-Chervonenkis(VC) dimension

• An unbiased hypothesis spaceis one that shatters the instance space X.
• Sometimes X cannotbe shattered by H, but a large subset of it can.
• Definition: The Vapnik-ChervonenkisDimensionVC(H)of hypothesis space Hdefined over instance space X
• is the size of the largestfinite subset of X shattered by H.
• if arbitrarily large finite sets of X can be shattered by H, then VC(H)≡∞
• If we find ONE set of instances of size d that can be shattered, then VC(H) d.
• To show that VC(H)

### VC Dim. Examples (1)

• Example 1:
• Instance space X: the set of real numbers
X = R
• H is the set of intervals on the real number axis.
• Form of H is: a < x < b
• VC(H) = ?

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：67951次
• 积分：1956
• 等级：
• 排名：千里之外
• 原创：128篇
• 转载：16篇
• 译文：0篇
• 评论：27条
每个人都是过客，每个人都有故事
也许深夜往往是人们内心最为脆弱的时刻。孤独，绝望，失意，无奈......这些复杂沉重的情绪会随着黑夜的来临不再躲藏。
评论排行
最新评论