Agnostic Learning (不可知学习)

原创 2016年05月07日 19:29:27

Agnostic Learning (不可知学习)


Computational Learning Theory (Cont.)

The Vapnik-Chervonenkis(VC) dimension

- Shattering a set of instances
- VC dimension

    - Definition and several examples


The Vapnik-Chervonenkis(VC) dimension

  • An unbiased hypothesis spaceis one that shatters the instance space X.
  • Sometimes X cannotbe shattered by H, but a large subset of it can.
  • Definition: The Vapnik-ChervonenkisDimensionVC(H)of hypothesis space Hdefined over instance space X
  • is the size of the largestfinite subset of X shattered by H.
  • if arbitrarily large finite sets of X can be shattered by H, then VC(H)≡∞
  • If we find ONE set of instances of size d that can be shattered, then VC(H) d.
  • To show that VC(H)

VC Dim. Examples (1)

  • Example 1:
    • Instance space X: the set of real numbers
      X = R
    • H is the set of intervals on the real number axis.
    • Form of H is: a < x < b
    • VC(H) = ?



版权声明:本文为博主原创文章,未经博主允许不得转载。

数据挖掘总结之消极学习与积极学习

消极学习与积极学习1. 积极学习(Eager Learning)这种学习方式是指在进行某种判断(例如,确定一个点的分类或者回归中确定某个点对应的函数值)之前,先利用训练数据进行训练得到一个目标函数,待...
  • qq_16365849
  • qq_16365849
  • 2016年02月04日 16:48
  • 1284

知识图谱中的知识表示学习(Representation Learning)

Word Representation1. one-hot representation 长度为词典长度,每个词在词典中的位置置1,其余置0 Curse of Dimension, 不适合太大的字典 ...
  • zlasd
  • zlasd
  • 2017年04月05日 15:47
  • 4904

深度学习模型-13 迁移学习(Transfer Learning)技术概述

前一期介绍了表示学习Representation Learning,指出其中比较有趣的一个方向-共享表示学习。今天介绍共享表示学习最相关的机器学习领域-迁移学习(Transfer Learning...
  • lqfarmer
  • lqfarmer
  • 2017年06月13日 20:37
  • 1753

Game Programming Algorithms and Techniques A Platform-Agnostic Approach

  • 2016年11月24日 21:57
  • 10.01MB
  • 下载

台湾国立大学(林轩田)《机器学习基石》(第4讲)Feasibility of Learning

课程地址:https://class.coursera.org/ntumlone-001/class 课件讲义:http://download.csdn.net/download/malele4t...
  • malele4th
  • malele4th
  • 2018年01月17日 16:10
  • 6

台湾国立大学(林轩田)《机器学习基石》(第3讲)Types of Learning

课程地址:https://class.coursera.org/ntumlone-001/class 课件讲义:http://download.csdn.net/download/malele4t...
  • malele4th
  • malele4th
  • 2018年01月17日 15:47
  • 4

tensorflow学习笔记(三十六):learning rate decay

learning rate decay在训练神经网络的时候,通常在训练刚开始的时候使用较大的learning rate, 随着训练的进行,我们会慢慢的减小learning rate。对于这种常用的训练...
  • u012436149
  • u012436149
  • 2017年03月14日 21:39
  • 8705

深度学习 Deep Learning with MATLAB(懒人版)

话说俄罗斯来的myc虽然是搞Computer Vision的,但是在上学的时候从来没有接触过Neural Network,更别说Deep Learning了。在他求职的时候,Deep Learning...
  • GarfieldEr007
  • GarfieldEr007
  • 2016年05月25日 14:59
  • 16548

Machine Learning Foundations(机器学习基石)笔记 第一节

第一课时
  • u013476464
  • u013476464
  • 2014年05月12日 10:58
  • 1058

机器学习(Machine Learning)心得体会(1)线性回归

本文是观看斯坦福大学吴恩达老师的机器学习视频后的一些心得体会和总结,以及作业题中的关键代码,大家可以共同讨论进步。 机器学习,我自己的理解就是让计算机去模拟人类的行为方式,也就是人工智能的一个雏形?!...
  • zongzongzong2015
  • zongzongzong2015
  • 2015年11月24日 16:11
  • 1661
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Agnostic Learning (不可知学习)
举报原因:
原因补充:

(最多只允许输入30个字)