爬取《战狼2》电影短评论,生成图云

原创 2017年08月12日 09:31:05

模拟登陆豆瓣

第一次登陆需要验证码,之后的登陆可以隐去 “login(”username’,’password’)”,因为使用session保存了必要的登陆信息,代码如下:

import requests
try:
    import cookielib
except:
    import http.cookiejar as cookielib
import re
import time
import os.path
import json
from bs4 import BeautifulSoup
try:
    from PIL import Image
except:
    pass

from mywordCloud import save_jieba_result
from mywordCloud import draw_wordcloud
import threading
import codecs
# 构造 Request headers
agent = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36'
headers = {
    "Host": "www.douban.com",
    "Referer": "https://www.douban.com/",
    'User-Agent': agent,
}

#使用cookie登录信息
session=requests.session()
session.cookies=cookielib.LWPCookieJar(filename='cookies')

try:
    session.cookies.load(ignore_discard=True)
    print('成功加载cookie')
except:
    print("cookie 未能加载")

# 获取验证码
def get_captcha(url):
    #获取验证码
    print('获取验证码',url)
    captcha_url = url
    r = session.get(captcha_url, headers=headers)
    print('test')
    with open('captcha.jpg', 'wb') as f:
        f.write(r.content)
        f.close()
    # 用pillow 的 Image 显示验证码
    # 如果没有安装 pillow 到源代码所在的目录去找到验证码然后手动输入
    try:
        im = Image.open('captcha.jpg')
        im.show()
        im.close()
    except:
        print(u'请到 %s 目录找到captcha.jpg 手动输入' % os.path.abspath('captcha.jpg'))
    captcha = input("please input the captcha\n>")
    return captcha

def isLogin():
    #登录个人主页,查看是否登录成功
    url='https://www.douban.com/people/151607908/'
    login_code=session.get(url,headers=headers,allow_redirects=False).status_code
    if login_code==200:
        return True
    else:
        return False


def login(acount,secret):
    douban="https://www.douban.com/"
    htmlcha=session.get(douban,headers=headers).text
    patterncha=r'id="captcha_image" src="(.*?)" alt="captcha"'
    httpcha=re.findall(patterncha,htmlcha)
    pattern2=r'type="hidden" name="captcha-id" value="(.*?)"'
    hidden_value=re.findall(pattern2,htmlcha)
    print(hidden_value)

    post_data = {
        "source": "index_nav",
        'form_email': acount,
        'form_password': secret
    }
    if len(httpcha)>0:
        print('验证码连接',httpcha)
        capcha=get_captcha(httpcha[0])
        post_data['captcha-solution']=capcha
        post_data['captcha-id']=hidden_value[0]

    print (post_data)
    post_url='https://www.douban.com/accounts/login'
    login_page=session.post(post_url,data=post_data,headers=headers)
    #保存cookies
    session.cookies.save()

    if isLogin():
        print('登录成功')
    else:
        print('登录失败')


def get_movie_sort():
    time.sleep(1)
    movie_url='https://movie.douban.com/chart'
    html=session.get(movie_url,headers=headers)
    soup=BeautifulSoup(html.text,'html.parser')
    result=soup.find_all('a',{'class':'nbg'})
    print(result)

#爬取短评论
def get_comment(filename):  #filename为爬取得内容保存的文件
    begin=1
    comment_url = 'https://movie.douban.com/subject/11600078/comments'
    next_url='?start=20&limit=20&sort=new_score&status=P'
    headers2 = {
            "Host": "movie.douban.com",
            "Referer": "https://www.douban.com/",
            'User-Agent': agent,
            'Connection': 'keep-alive',
        }
    f=open(filename,'w+',encoding='utf-8')
    while(True):
        time.sleep(6)
        html=session.get(url=comment_url+next_url,headers=headers2)
        soup=BeautifulSoup(html.text,'html.parser')

        #爬取当前页面的所有评论
        result=soup.find_all('div',{'class':'comment'}) #爬取得所有的短评
        pattern4 = r'<p class=""> (.*?)' \
                   r'</p>'
        for item in result:
            s=str(item)
            count2=s.find('<p class="">')
            count3=s.find('</p>')
            s2=s[count2+12:count3]  #抽取字符串中的评论
            if 'class' not in s2:
                f.write(s2)

        #获取下一页的链接
        next_url=soup.find_all('div',{'id':'paginator'})
        pattern3=r'href="(.*?)">后页'
        if(len(next_url)==0):
            break
        next_url=re.findall(pattern3,str(next_url[0]))  #得到后页的链接
        if(len(next_url)==0): #如果没有后页的链接跳出循环
            break
        next_url=next_url[0]
        print('%d爬取下一页评论...'%begin)
        begin=begin+1
        #如果爬取了5次则多休息2秒
        if(begin%6==0):
            time.sleep(40)
            print('休息...')
        print(next_url)
    f.close()

#多线程爬虫,爬取豆瓣影评
def thread_get_comment(filename):
    next_url = '?start=19&limit=20&sort=new_score&status=P'
    headers2 = {
        "Host": "movie.douban.com",
        "Referer": "https://www.douban.com/",
        'User-Agent': agent,
        'Connection': 'keep-alive',
    }
    f = open(filename, 'w+', encoding='utf-8')
    comment_url = 'https://movie.douban.com/subject/26363254/comments'
    crawl_queue=[comment_url+next_url]
    crawl_queue.append('https://movie.douban.com/subject/26363254/comments?start=144&limit=20&sort=new_score&status=P')
    seen=set(crawl_queue)

    def process_queue():
        begin = 1
        while True:
            try:
                url=crawl_queue.pop()
            except  IndexError:
                break
            else:
                time.sleep(5)
                html = session.get(url=url,headers=headers2)
                soup = BeautifulSoup(html.text, 'html.parser')

                # 爬取当前页面的所有评论
                result = soup.find_all('div', {'class': 'comment'})  # 爬取得所有的短评
                pattern4 = r'<p class=""> (.*?)' \
                           r'</p>'
                for item in result:
                    s = str(item)
                    count2 = s.find('<p class="">')
                    count3 = s.find('</p>')
                    s2 = s[count2 + 12:count3]  # 抽取字符串中的评论
                    f.write(s2)

                # 获取下一页的链接
                next_url = soup.find_all('div', {'id': 'paginator'})
                pattern3 = r'href="(.*?)">后页'
                if (len(next_url) == 0):
                    break
                next_url = re.findall(pattern3, str(next_url[0]))  # 得到后页的链接
                if (len(next_url) == 0):  # 如果没有后页的链接跳出循环
                    break
                next_url = next_url[0]
                print('%d爬取下一页评论...' % begin)
                begin = begin + 1
                # 如果爬取了6次则多休息2秒
                if (begin % 6 == 0):
                    print('休息...')
                    time.sleep(30)

                print(next_url)
                if comment_url+next_url not in seen:
                    seen.add(comment_url+next_url)
                    crawl_queue.append(comment_url+next_url)

    threads=[]
    max_threads=5
    while threads or crawl_queue:
        for thread in threads:
            if not thread.is_alive():
                threads.remove(thread)
        while len(threads)< max_threads and crawl_queue:
            thread=threading.Thread(target=process_queue)
            print('--------下一个线程----------')
            thread.setDaemon(True) # set daemon so main thread can exit when receive ctrl + C
            thread.start()
            threads.append(thread)
        time.sleep(2)


    f.close()

if __name__=='__main__':
    if isLogin():
        print('您已经登录')
    else:
        print('xs')
        login('dsdz@qq.com','5sdfsd6')

    file_name='key3.txt'
    get_comment(file_name)        #单线程爬虫
    #thread_get_comment(file_name)  #多线程爬虫
    save_jieba_result(file_name)
    draw_wordcloud('pjl_jieba.txt')

爬取得评论保存在key3.txt 文本文件中:
这里写图片描述

生成图云

第一步需要:安装必要的python 库,其中需要的有 生成图云scipy 、wordcloud。python库的安装方法,可以参考笔者的博客安装第三方库。一切准备就绪之后,就可以使用jieba分词对得到的所有评论进行分词,分词时候就可以绘制图云。

其中主要的代码 mywordCloud.py

from scipy.misc import  imread
import codecs
from os import  path
import jieba
from wordcloud import WordCloud


#暂时没有用到
def get_all_keywords(file_name):
    word_lists=[]  #关键词列表
    with codecs.open(file_name,'r',encoding='utf-8') as f:
        Lists=f.readlines()
        for li in Lists:
            cut_list=list(jieba.cut(li))
            for word in cut_list:
                word_lists.append(word)

    word_lists_set=set(word_lists)  #去除相同的元素
    sort_count=[]
    word_lists_set=list(word_lists_set)

    length=len(word_lists_set)
    print(u'共有%d个关键词'%length)
    k = 1
    for w in word_lists_set:
        sort_count.append(w + u':' + str(word_lists.count(w)) + u"次\n")
        print(u"%d---" % k + w + u":" + str(word_lists.count(w)) + u"次")
        k += 1
    with codecs.open('count_word.txt', 'w', encoding='utf-8') as f:
        f.writelines(sort_count)


def save_jieba_result(file_name):
    #设置多线程切割
    #jieba.enable_parallel(4)
    dirs=path.join(path.dirname(__file__),file_name)
    print(dirs)
    with codecs.open(dirs,encoding='utf-8') as f:
        comment_text=f.read()
    cut_text=" ".join(jieba.cut(comment_text))
    with codecs.open('pjl_jieba.txt','w',encoding='utf-8') as f:
        f.write(cut_text)


def draw_wordcloud(file_name):
    with codecs.open(file_name,encoding='utf-8') as f:
        comment_text=f.read()
    color_mask=imread('timg.jpg') #读取背景图片
    stopwords = ['png','douban','com','href','https','img','img3','class','source','icon','shire',u'有点',u'真的',u'觉得',u'还是',u'一个',u'就是', u'电影', u'你们', u'这么', u'不过', u'但是', u'什么', u'没有', u'这个', u'那个', u'大家', u'比较', u'看到', u'真是',
                 u'除了', u'时候', u'已经', u'可以']
    font = r'C:\Windows\Fonts\simfang.ttf'
    cloud=WordCloud(font_path=font,background_color='white',max_words=20000,max_font_size=200,min_font_size=10,mask=color_mask,stopwords=stopwords)
    word_cloud=cloud.generate(comment_text)  #产生词云
    word_cloud.to_file('mycloud.jpg')

通过上面两个代码,就可以生成漂亮的图云,来预测观看《战狼2》这部电影的人主要评论的关键词:
这里写图片描述

附上笔者的github源代码地址:https://github.com/wu-yy/warWolf

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

IT 行业加班到底有没有价值?

众所周知,说到 IT 行业,大家的第一印象都是「加班严重」,不得不说,加班确实是 IT 行业潜规则了,IT 行业也被冠以「月薪高,时薪低」的美名。之前网上还流行这么一个段子:说一小伙去面试,面试官问到...
  • googdev
  • googdev
  • 2017年07月18日 14:02
  • 8210

程序员的 “坏” 习惯:试一试

有时,碰到一些程序员会问:“我以前是做安卓的,现在想试着学下后端服务开发,觉得怎样?”。我一下就会卡住,不知该如何回答好。学习本是好事,但前面加个 “试着” 似乎感觉就不太好了。好的出发点“试一试” ...

数据采集(七):爬取豆瓣电影评论(scrapy+模拟登陆)

目标爬取豆瓣电影上至少10部电影的短评数据。本例中爬取开始的链接是豆瓣电影排行榜,可以看到刚好有10部。点击每个电影的标题会切入电影简介页。这个页面仅包含电影的部分评论。通过访问“全部**条”超链,可...
  • czl389
  • czl389
  • 2017年08月01日 17:54
  • 658

爬取网易云音乐评论2

Intro前一阵子写了个爬取网易云音乐评论的python程序 但是只是完成了一个开端,最近抽空稍微完善了一下先看一下整体流程 获取要爬取的歌手的ID 通过ID获取这个歌手的所有专辑ID 通过专辑获取...

python爬取ajax动态生成的数据 以抓取淘宝评论为例子

在学习python的时候,一定会遇到网站内容是通过ajax动态请求、异步刷新生成的json数据的情况,并且通过python使用之前爬取静态网页内容的方式是不可以实现的,所以这篇文章将要讲述如果在pyt...

爬取网易云音乐评论

  • 2017年08月27日 15:27
  • 8KB
  • 下载

爬取京东商品评论的爬虫源码

  • 2016年05月21日 12:46
  • 14KB
  • 下载

[影评]电影《喜剧之王》评论两篇(1、喜剧之王:永不退缩的人生 2、努力!奋斗!——再看《喜剧之王》)

写在前面:算是半多个周星星同学的拥趸吧,看了N多部周星星同学的片子及评论,在搞笑娱乐之余亦收益良多,感谢他的片子让我们透过多角度的视线感悟到了多样化的故事与人生,而如果一定要给他的片子排个序的话,个人...

Python爬虫爬取豆瓣电影实例

  • 2017年03月27日 20:47
  • 5KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:爬取《战狼2》电影短评论,生成图云
举报原因:
原因补充:

(最多只允许输入30个字)