关闭

多重集合的排列与组合

标签: 排列组合
1739人阅读 评论(0) 收藏 举报
分类:

《Introductory Combinatorics Fifth Edition》学习笔记:

多重集合的排列:

设S是有k种不同类型对象的多重集合,每个元素都有无限的重复数。那么s的r排列数目是k^r.

例子:最多有4位的3进制数(3元数)的个数是多少?
分析:3^4=81。

设s是多重集合,有k种类型的对象,且每种类型的有限重复数是n1,n2,……,nk。s的大小是n=n1+n2+n3+……+nk。那么s的排列数目等于:result=n!/(n1!*n2!*……*nk!)

例子:词MISSISSIPPI中字母的排列数是?
分析:词含有的字母总个数是11,M:1,I:4,S:4,P:2。所以result=11!/(1*4!*4!*2!).

设n是正整数,并设n1,n2,……,nk是正整数且n=n1+n2+……+nk。把所有的对象划分成k个标有不同标签的盒子,且盒子们分别对应n1,n2,……,nk。那么划分的总方案数是: n!/(n1!*n2!*……nk!)。假如这些标签都是相同的或者说没有标签,并且n1=n2=……=nk,那么总数是n!/[k!*n1*n2*……*nk!].

例子:3种类型9个对象的多重集合s={3*a,2*b,4*c}。求s中8排列的个数?
分析:要排列的数目和对象的总个数不相同。分成3种情况讨论,s1={2a,2b,4c},s1=8!/(2!*2!*4!)=420; s2={3a,b,4c},s2=8!/(3!*1*4!)=280; s3={3a,2b,3c},s3=8!/(3!*2!*3!)=560. result=s1+s2+s3.

多重集合的组合:

通过一个例子来初步认识:设s={2a,1b,3c},那么s的3组合是:{2a,b},{2a,c},{a,b,c},{b,2c},{a,2c},{3c}。

设S是有k种类型对象的多重集合,每种元素均有无限的重复数。那么S的r组合的个数等于:C(r+k-1,r).
证明:S任何r组合一定呈现{x1*a1,x2*a2,……,xk*ak}的组合形式。x1+x2+……+xk=r.先将x系列数字分割成k部分,这样有了r+k-1个元素(要插入k-1个隔板,可以看做值为0的元素),用这些元素组成的一个r排列就是解。那么这样的排列个数是(r+k-1)!/(k-1)!/r!(除以同类型值的排列),即C(r+k-1,r)。

问题:一家面包店有8种炸面包圈。如果一盒内装有一打(12个)炸面包圈,那么能够装配多少类型的面包圈盒?
分析:和上面的知识点一样,12个x分成8份,然后选出12排列。result=C(12+8-1,12)。
问题:继续上面的问题,如果8种面包圈每一种都需要至少一个,那么结果的面包盒有多少个?
分析:变量代换x'=x-1,则8个x'的和是8x-8=12-8=4,result=C(4+8-1,4)。

组合问题中的每种类型的对象出现次数的下界可以通过变量代换来解决。

问题:x1+x2+x3+x4=20的整数解的个数是多少?其中x1>=3,x2>=1,x3>=0,x4>=5.
分析:y1=x1-3,y2=x2-1,y3=x3,y4=x4-5. y1+y2+y3+y4=20-9=11.result=C(11+4-1,11)=364.


0
1
查看评论

多重集合的排列和组合问题

一、先来回顾一下无重复元素的排列组合定义 排列,英文名为Permutation,是指从某元素集合中取出指定个数的元素进行排序 组合,英文名为Combination,是指从某元素集合中仅仅取出指定个数的元素,不考虑排序 从有n个不同元素的集合任取r个元素的排列方式有:P(n, r...
  • kennyrose
  • kennyrose
  • 2012-04-17 16:18
  • 9184

集合与多重集合(set和multiset)

集合与多重集合(set和multiset)         与基本容器相比,关联容器更注重快速和高效地检索数据的能力。这些容器是根据键值(key)来检索数据的,键可以是值也可以是容器中的某一成员。这一类中的成员在初始化后都是按一定顺序排好序的。  ...
  • u012685888
  • u012685888
  • 2014-11-15 22:30
  • 431

STL 关联容器之集合和多重集合

目录 头文件: #include 集合和多重集合的唯一区别:多重集合可以包含重复元素,集合不可以包含重复元素。 构造方法 ctType ct                     ...
  • haifengzhilian
  • haifengzhilian
  • 2014-04-14 13:22
  • 1440

多重集合的排列与组合

《Introductory Combinatorics Fifth Edition》学习笔记: 多重集合的排列: 设S是有k种不同类型对象的多重集合,每个元素都有无限的重复数。那么s的r排列数目是k^r. 例子:最多有4位的3进制数(3元数)的个数是多少? 分析:3^4=81。 ...
  • theArcticOcean
  • theArcticOcean
  • 2015-07-07 20:55
  • 1739

poj3421(多重集排列,唯一分解定理)

/* translation: 给出一个数,求能够形成的x数链最长是多少?(x数链是指以1开始,以n结尾,其中任意相邻的两个数,前面的数都能整除后面) solution: 多重集排列计数,唯一分解定理 由x数链的性质可以发现,将n分解为其质因数相乘的形式后,数链中任何一个数必定是这些质因数的某...
  • qq_29169749
  • qq_29169749
  • 2016-10-27 21:05
  • 256

排列与组合的关系

Amn=n!(n−m)!=(n−m+1)⋅…⋅(n−1)⋅n A_n^m=\frac{n!}{(n-m)!}=(n-m+1)\cdot \ldots \cdot (n-1)\cdot n 所以当分母部分为 1 时((n−m)!=1(n-m)!=1),Amn=n!A_n^m=n!,为全排列。n!=1⇒...
  • lanchunhui
  • lanchunhui
  • 2016-07-09 22:45
  • 875

多重排列和多重组合

比如有这样一个例子: helloo这个单词字母排列有多少种方案呢? 我们学过无重排列,那我们是不是可以转化呢? 我们把‘l’,‘o’分别加上下标1,2,那么就有6个不同的字母了。 全排列的个数为6!, 然后我们在除以重复数字的冗余度即 6!/2!2!这就是多重排列的方案数了。 Σ 那我们来扩展一下 ...
  • qq_35283188
  • qq_35283188
  • 2017-06-26 17:43
  • 89

TJU 2795 The Queen's New Necklaces(Polya+多重集排列)

转载请注明出处,谢谢 http://blog.csdn.net/ACM_cxlove?viewmode=contents           by---cxlove 题目:还是染色问题...
  • ACM_cxlove
  • ACM_cxlove
  • 2012-08-14 16:40
  • 1525

多重集合的排列与组合

《Introductory Combinatorics Fifth Edition》学习笔记: 多重集合的排列: 设S是有k种不同类型对象的多重集合,每个元素都有无限的重复数。那么s的r排列数目是k^r. 例子:最多有4位的3进制数(3元数)的个数是多少? 分析:3^4=81。 ...
  • theArcticOcean
  • theArcticOcean
  • 2015-07-07 20:55
  • 1739

组合数学基本工具-- 排列与组合以及简单公式

给定一个n集合,假设我们想要挑选出r个元素,并一次排列它们,这样的一个排列称为这个n集合的一个r排列(r-permutation of the n-set). P( n , r )将计数 n 集合的 r 排列的数量. P( n , r ) = n * (n-1) * (n-2) * ... * (n...
  • u010551600
  • u010551600
  • 2017-09-05 20:44
  • 225
    个人资料
    • 访问:351665次
    • 积分:9102
    • 等级:
    • 排名:第2444名
    • 原创:577篇
    • 转载:13篇
    • 译文:0篇
    • 评论:36条
    我的链接
    最新评论