关闭

机器学习(周志华)习题解答4.3: Python小白详解ID3决策树的实现

标签: ID3python决策树周志华机器学习
2419人阅读 评论(5) 收藏 举报
分类:

说明:python小白我用了修改自《Machine Laerning in Action》的代码和学习了这篇这篇博文对于离散和连续两种不同特征类型的处理,十分感谢。ID3算法本身这里不赘述,本文主要以一个初学者的角度详细讲解算法的python实现过程。希望和我一样看别人代码需要理解好久的新手看我啰嗦的注释可以理解地快一点~所用数据是周志华《机器学习》p84页的西瓜数据集3.0,请点击这里下载数据csv文件,占版面我就不在正文附数据了。是个很小却包括了离散连续两种类型的数据集~数据对应的中文点击这里查看。

实现:为了方便测试,我把本文讲解的几段代码整合放到一个.py文件里了,请点击这里进行下载。将下载好的数据文件"watermelon3_0_En.csv"和代码.py文件放在一个目录下,直接运行代码即可看到绘出的决策树图像。

详解:代码主要分为以下五个部分

   1)定义生成树过程中要用到的函数

   2)定义函数:调用之前写好的函数吗,通过递归实现决策树生成(这部分会写伪代码详解思路)

   3)读取数据+调用函数生成决策树;

   4)定义绘图函数

   5)调用函数绘图

   下文会分步骤详细解释代码。代码每一步的含义都在注释中尽可能详细地说明的,至于每个函数的用处,函数之间关系和整体代码思路框架,我会在文章里面说明。

1. 定义生成树所用函数

    首先说明:对于连续离散两种类型的特征,经常需要分别处理,这个问题贯穿着整个题目的求解。

1) 我们知道ID3是基于信息熵增益 (Infomation Gain)选取下一步的划分特征的,故这部分需要定义一个函数可以计算不同划分方式(特征)的信息熵增益:calcInfoEnt()
    计算信息熵增益时,当前数据集已经被划分成好几个subDataSet了,所以信息熵是几个子集上信息熵加权之和(总之就是ID3算法本身讲的,这里注意一下就好)。

2) 对给定数据集,需根据求得的熵增选取当前最佳熵增最大)用于划分特征chooseBestFeatureToSplit()
  若是离散特征,只需要选择返回根据哪一个离散取值划分即可;
  若是连续特征,则需返回最佳划分点的值。这些划分点时我们定义的函数中计算出来的。
  还有一点十分重要的:可以看到这个函数定义的最后那十行左右,在对连续特征进行二值化处理。这是由于我们之后在递归生成决策树createTree()时候会调对每一个特征进行一次dataSet的划分(我在程序注释里标记了),那里直接调用了SplitDiscreteDataSet()函数,因为这里二值化后已经将continuous特征的取值变成0和1的离散值了。(注:其实这个操作也不是多精巧……比如在createTree()划分dataSet的时候,我完全可以判定一下是离散or连续,然后调用相应的Split...DatsSet()就可以)

3) 选择好划分特征后,需要对数据集进行划分。这时候应有两个函数对离散和连续分别处理:SplitDiscreteDataSet() 和 SplitContinuousDataSet()
  注意到,这两个函数其实先是为chooseBestFeatureToSplit()服务的,之后才是用来做这一步即真的对数据集进行操作划分。之前都是在chooseBestFeatureToSplit()的选择过程中,给每个特征的每个取值(或划分点)试一下“这样划分后怎么样?”,这才选出了最佳划分特征。

4) 以上这样划分数据集就完成了?但实际上编程实现需要考虑更周全一点。若出现噪声数据怎么办(或者说数据本身就这样,不一定噪声)?即如果所有的特征都已经在划分中用过了,但节点下样本分类还是没有统一。这时候,就需要投票处理,少数服从多数了:majorityCnt()
  
  有了这些函数,下一步就可以着手递归生成决策树了。

# -*- coding: utf-8 -*-
'''生成树的函数'''###############################################################

from numpy import *  
import numpy as np  
import pandas as pd  
from math import log  
import operator  
### 计算数据集的信息熵(Information Gain)增益函数(机器学习实战中信息熵叫香农熵)
def calcInfoEnt(dataSet):#本题中Label即好or坏瓜		#dataSet每一列是一个属性(列末是Label)
	numEntries = len(dataSet)						#		每一行是一个样本	
	labelCounts = {}								#给所有可能的分类创建字典labelCounts						
	for featVec in dataSet:							#按行循环:即rowVev取遍了数据集中的每一行
		currentLabel = featVec[-1]					#故featVec[-1]取遍每行最后一个值即Label
		if currentLabel not in labelCounts.keys():	#如果当前的Label在字典中还没有
			labelCounts[currentLabel] = 0			#则先赋值0来创建这个词
		labelCounts[currentLabel] += 1				#计数, 统计每类Label数量(这行不受if限制)
	InfoEnt = 0.0
	for key in labelCounts:							#遍历每类Label
		prob = float(labelCounts[key])/numEntries   #各类Label熵累加
		InfoEnt -= prob * log(prob,2)				#ID3用的信息熵增益公式
	return InfoEnt
  
### 对于离散特征: 取出该特征取值为value的所有样本
def splitDiscreteDataSet(dataSet, axis, value):		#dataSet是当前结点(待划分)集合
													#axis指示划分所依据的属性
													#value该属性用于划分的取值
	retDataSet = []									#为return Data Set分配一个列表用来储存																			
	for featVec in dataSet:
		if featVec[axis] == value:
			reducedFeatVec = featVec[:axis]			#该特征之前的特征仍保留在样本dataSet中
			reducedFeatVec.extend(featVec[axis+1:]) #该特征之后的特征仍保留在样本dataSet中
			retDataSet.append(reducedFeatVec)		#把这个样本加到list中
	return retDataSet
 
### 对于连续特征: 返回特征取值大于value的所有样本(以value为阈值将集合分成两部分)
def splitContinuousDataSet(dataSet, axis, value): 
    retDataSetG=[]									#将储存取值大于value的样本
    retDataSetL=[]									#将储存取值小于value的样本  
    for featVec in dataSet:  
		if featVec[axis]>value:  
			reducedFeatVecG=featVec[:axis]
			reducedFeatVecG.extend(featVec[axis+1:])  
			retDataSetG.append(reducedFeatVecG)
		else:
			reducedFeatVecL=featVec[:axis]
			reducedFeatVecL.extend(featVec[axis+1:])  
			retDataSetL.append(reducedFeatVecL)
    return retDataSetG,retDataSetL					#返回两个集合, 是含2个元素的tuple形式
 
### 根据InfoGain选择当前最好的划分特征(以及对于连续变量还要选择以什么值划分)
def chooseBestFeatureToSplit(dataSet,labels):  
    numFeatures=len(dataSet[0])-1  
    baseEntropy=calcInfoEnt(dataSet)  
    bestInfoGain=0.0; bestFeature=-1  
    bestSplitDict={}  
    for i in range(numFeatures):  
		#遍历所有特征:下面这句是取每一行的第i个, 即得当前集合所有样本第i个feature的值
        featList=[example[i] for example in dataSet]  
		#判断是否为离散特征
        if not (type(featList[0]).__name__=='float' or type(featList[0]).__name__=='int'): 
### 对于离散特征:求若以该特征划分的熵增
			uniqueVals = set(featList)				#从列表中创建集合set(得列表唯一元素值)
			newEntropy = 0.0	
			for value in uniqueVals:				#遍历该离散特征每个取值
				subDataSet = splitDiscreteDataSet(dataSet, i, value)#计算每个取值的信息熵
				prob = len(subDataSet)/float(len(dataSet))
				newEntropy += prob * calcInfoEnt(subDataSet)#各取值的熵累加
			infoGain = baseEntropy - newEntropy		#得到以该特征划分的熵增 
### 对于连续特征:求若以该特征划分的熵增(区别:n个数据则需添n-1个候选划分点, 并选最佳划分点) 
        else: 
            #产生n-1个候选划分点  
            sortfeatList=sorted(featList)  
            splitList=[]  
            for j in range(len(sortfeatList)-1):  	#产生n-1个候选划分点
                splitList.append((sortfeatList[j]+sortfeatList[j+1])/2.0)  
            bestSplitEntropy=10000                  #设定一个很大的熵值(之后用)
            #遍历n-1个候选划分点: 求选第j个候选划分点划分时的熵增, 并选出最佳划分点
            for j in range(len(splitList)):
                value=splitList[j]  
                newEntropy=0.0  
                DataSet = splitContinuousDataSet(dataSet, i, value)
                subDataSetG=DataSet[0]
                subDataSetL=DataSet[1]  
                probG = len(subDataSetG) / float(len(dataSet))  
                newEntropy += probG * calcInfoEnt(subDataSetG)  
                probL = len(subDataSetL) / float(len(dataSet))  
                newEntropy += probL * calcInfoEnt(subDataSetL)
                if newEntropy < bestSplitEntropy:  
                    bestSplitEntropy=newEntropy  
                    bestSplit=j
            bestSplitDict[labels[i]] = splitList[bestSplit]#字典记录当前连续属性的最佳划分点
            infoGain = baseEntropy - bestSplitEntropy	   #计算以该节点划分的熵增		
### 在所有属性(包括连续和离散)中选择可以获得最大熵增的属性
        if infoGain>bestInfoGain:  
            bestInfoGain=infoGain  
            bestFeature=i  
    #若当前节点的最佳划分特征为连续特征,则需根据“是否小于等于其最佳划分点”进行二值化处理
	#即将该特征改为“是否小于等于bestSplitValue”, 例如将“密度”变为“密度<=0.3815”
	#注意:以下这段直接操作了原dataSet数据, 之前的那些float型的值相应变为0和1
	#【为何这样做?】在函数createTree()末尾将看到解释
    if type(dataSet[0][bestFeature]).__name__=='float' or \
	type(dataSet[0][bestFeature]).__name__=='int':        
        bestSplitValue=bestSplitDict[labels[bestFeature]]          
        labels[bestFeature]=labels[bestFeature]+'<='+str(bestSplitValue)  
        for i in range(shape(dataSet)[0]):  
            if dataSet[i][bestFeature]<=bestSplitValue:  
                dataSet[i][bestFeature]=1  
            else:  
                dataSet[i][bestFeature]=0  
    return bestFeature      
  
### 若特征已经划分完,节点下的样本还没有统一取值,则需要进行投票:计算每类Label个数, 取max者
def majorityCnt(classList):  						
    classCount={}  									#将创建键值为Label类型的字典
    for vote in classList:  
        if vote not in classCount.keys():  
            classCount[vote]=0  					#第一次出现的Label加入字典
        classCount[vote]+=1  						#计数
    return max(classCount)

2. 定义递归的主函数

  生成决策树用了编程中常见且巧妙的“递归”方法,先来看一下伪代码?也许会有一点好的理解。

                                            ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
           if so return            else               chooseBestFeatureToSplit               SplitDateSet                                  for                                       return        
                                                  ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

  递归生成决策树的这个函数框架我觉得伪代码讲得比较清楚了,但是实际操作过程中有几点需要注意的:

  1)递归停止条件实际上细化以后有3种,见注释;

  2)为了避免某些特征的某些取值在划分时候,该取值下样本为空集,故有程序中“uniqueValsFull”这一步的设定。这部分十分感谢这位博主给出的解释,引用过来:“在某次划分,比如在根节点划分纹理的时候,将数据分成了清晰、模糊、稍糊三块。假设之后在模糊这一子数据集中,下一划分属性是触感,而这个数据集中只有软粘属性的西瓜,这样建立的决策树在当前节点划分时就只有软粘这一属性了。但事实上训练样本中还有硬滑这一属性,这样就造成了树的缺失,因此用到uniqueValFull之后就能将训练样本中有的属性值都囊括。 ”

  3)递归的过程,其实就是针对当前划分特征的每个取值,划分出一个子树。在子树上进行递归。比如还是引用刚刚那位博主的话:对于纹理,树应该是{"纹理":{?}},显然?处是纹理的不同取值,有清晰模糊和稍糊三种,对于每一种情况, 都去建立一个自己的树,大概长这样{"纹理":{"模糊":{0},"稍糊":{1},"清晰":{2}}},对于0\1\2这三棵子树,每次建树的训练样本都是值为value特征数减少1的子集。

  4)生成的决策树以什么形式储存的呢?也许第一次会觉得比较抽象?就是上一行说的这样:{"纹理":{"模糊":{0},"稍糊":{1},"清晰":{2}}}

  至此就完成了ID3决策树的生成,并以字典的形式将其储存了起来。但是字典看着太麻烦很抽象,下面我们利用matplotlib来进行决策树的绘图。

### 主程序:递归产生决策树
	# dataSet:当前用于构建树的数据集, 最开始就是data_full,然后随着划分的进行越来越小。这是因为进行到到树分叉点上了. 第一次划分之前17个瓜的数据在根节点,然后选择第一个bestFeat是纹理. 纹理的取值有清晰、模糊、稍糊三种;将瓜分成了清晰(9个),稍糊(5个),模糊(3个),这时应该将划分的类别减少1以便于下次划分。 
	# labels:当前数据集中有的用于划分的类别(这是因为有些Label当前数据集没了, 比如假如到某个点上西瓜都是浅白没有深绿了)
	# data_full:全部的数据 
	# label_full:全部的类别 
numLine = numColumn = 2 #这句是因为之后要用global numLine……至于为什么我一定要用global
# 我也不完全理解。如果我只定义local变量总报错,我只好在那里的if里用global变量了。求解。
def createTree(dataSet,labels,data_full,labels_full):  
    classList=[example[-1] for example in dataSet] 
	#递归停止条件1:当前节点所有样本属于同一类;(注:count()方法统计某元素在列表中出现的次数)
    if classList.count(classList[0])==len(classList):  
        return classList[0]  
	#递归停止条件2:当前节点上样本集合为空集(即特征的某个取值上已经没有样本了):
	global numLine,numColumn
	(numLine,numColumn)=shape(dataSet)
    if float(numLine)==0:  
        return 'empty'
	#递归停止条件3:所有可用于划分的特征均使用过了,则调用majorityCnt()投票定Label;
    if float(numColumn)==1:  
        return majorityCnt(classList)  
	#不停止时继续划分:
    bestFeat=chooseBestFeatureToSplit(dataSet,labels)#调用函数找出当前最佳划分特征是第几个
    bestFeatLabel=labels[bestFeat]  				#当前最佳划分特征
    myTree={bestFeatLabel:{}}  
    featValues=[example[bestFeat] for example in dataSet]  
    uniqueVals=set(featValues)  
    if type(dataSet[0][bestFeat]).__name__=='str':  
        currentlabel=labels_full.index(labels[bestFeat])  
        featValuesFull=[example[currentlabel] for example in data_full]  
        uniqueValsFull=set(featValuesFull)  
    del(labels[bestFeat]) #划分完后, 即当前特征已经使用过了, 故将其从“待划分特征集”中删去
    #【递归调用】针对当前用于划分的特征(beatFeat)的每个取值,划分出一个子树。  
    for value in uniqueVals:						#遍历该特征【现存的】取值
        subLabels=labels[:]  
        if type(dataSet[0][bestFeat]).__name__=='str':  
            uniqueValsFull.remove(value)  			#划分后删去(从uniqueValsFull中删!)
        myTree[bestFeatLabel][value]=createTree(splitDiscreteDataSet\
         (dataSet,bestFeat,value),subLabels,data_full,labels_full)#用splitDiscreteDataSet()
	#是由于, 所有的连续特征在划分后都被我们定义的chooseBestFeatureToSplit()处理成离散取值了。
    if type(dataSet[0][bestFeat]).__name__=='str':  #若该特征离散【更详见后注】
        for value in uniqueValsFull:#则可能有些取值已经不在【现存的】取值中了
									#这就是上面为何从“uniqueValsFull”中删去
									#因为那些现有数据集中没取到的该特征的值,保留在了其中
            myTree[bestFeatLabel][value]=majorityCnt(classList)  
    return myTree 

3. 用数据生成决策树

  这几行就没什么可解释的了。读取文件过程中其实经常出问题……所以按我文章开头分享的数据集合代码应该可以成功。数据文件需要注意编码和文件格式的问题。比如我就遇到这种问题……另外我复制数据的时候不容易复制到excel里面于是我用python这样处理了,初学者也可以瞅瞅玩~

'''生成树调用的语句'''###########################################################

df=pd.read_csv('watermelon3_0_En.csv')  
data=df.values[:,1:].tolist()  
data_full=data[:]  
labels=df.columns.values[1:-1].tolist()  
labels_full=labels[:]  
myTree=createTree(data,labels,data_full,labels_full)  

4. 定义绘图函数

  既然是小白写给小白的,那这部分我觉得刚上手时候不需要追根究底完全掌握,主要是用matplotlib来绘图。不过这个其实是个必备常用技能吧~还是希望有空好好学习下。我也只是差不多知道每一个函数在干什么而已,所以都写在注释里了~不斗胆继续解释啦。具体请参见《机器学习实战》这本书的详解,这部分代码我完全用的书上提供的。

'''绘决策树的函数'''#############################################################

import matplotlib.pyplot as plt  
decisionNode=dict(boxstyle="sawtooth",fc="0.8")  	#定义分支点的样式
leafNode=dict(boxstyle="round4",fc="0.8")  			#定义叶节点的样式
arrow_args=dict(arrowstyle="<-")  					#定义箭头标识样式
  
### 计算树的叶子节点数量  
def getNumLeafs(myTree):  
    numLeafs=0  
    firstStr=myTree.keys()[0]  
    secondDict=myTree[firstStr]  
    for key in secondDict.keys():  
        if type(secondDict[key]).__name__=='dict':  
            numLeafs+=getNumLeafs(secondDict[key])  
        else: numLeafs+=1  
    return numLeafs  

### 计算树的最大深度  
def getTreeDepth(myTree):  
    maxDepth=0  
    firstStr=myTree.keys()[0]  
    secondDict=myTree[firstStr]  
    for key in secondDict.keys():  
        if type(secondDict[key]).__name__=='dict':  
            thisDepth=1+getTreeDepth(secondDict[key])  
        else: thisDepth=1  
        if thisDepth>maxDepth:  
            maxDepth=thisDepth  
    return maxDepth  
  
### 画出节点  
def plotNode(nodeTxt,centerPt,parentPt,nodeType):  
    createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords='axes fraction',\
    xytext=centerPt,textcoords='axes fraction',va="center", ha="center",\
    bbox=nodeType,arrowprops=arrow_args)  
  
### 标箭头上的文字  
def plotMidText(cntrPt,parentPt,txtString):  
    lens=len(txtString)  
    xMid=(parentPt[0]+cntrPt[0])/2.0-lens*0.002  
    yMid=(parentPt[1]+cntrPt[1])/2.0  
    createPlot.ax1.text(xMid,yMid,txtString)  
      
def plotTree(myTree,parentPt,nodeTxt):  
    numLeafs=getNumLeafs(myTree)  
    depth=getTreeDepth(myTree)  
    firstStr=myTree.keys()[0]  
    cntrPt=(plotTree.x0ff+\
    (1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.y0ff)  
    plotMidText(cntrPt,parentPt,nodeTxt)  
    plotNode(firstStr,cntrPt,parentPt,decisionNode)  
    secondDict=myTree[firstStr]  
    plotTree.y0ff=plotTree.y0ff-1.0/plotTree.totalD  
    for key in secondDict.keys():  
        if type(secondDict[key]).__name__=='dict':  
            plotTree(secondDict[key],cntrPt,str(key))  
        else:  
            plotTree.x0ff=plotTree.x0ff+1.0/plotTree.totalW  
            plotNode(secondDict[key],\
            (plotTree.x0ff,plotTree.y0ff),cntrPt,leafNode)  
            plotMidText((plotTree.x0ff,plotTree.y0ff)\
            ,cntrPt,str(key))  
    plotTree.y0ff=plotTree.y0ff+1.0/plotTree.totalD  
  
def createPlot(inTree):  
    fig=plt.figure(1,facecolor='white')  
    fig.clf()  
    axprops=dict(xticks=[],yticks=[])  
    createPlot.ax1=plt.subplot(111,frameon=False,**axprops)  
    plotTree.totalW=float(getNumLeafs(inTree))  
    plotTree.totalD=float(getTreeDepth(inTree))  
    plotTree.x0ff=-0.5/plotTree.totalW  
    plotTree.y0ff=1.0  
    plotTree(inTree,(0.5,1.0),'')  
    plt.show()

5. 调用函数绘图

  一行的调用语句2333。决策树图get撒花~

'''命令绘决策树的图'''#############################################################

createPlot(myTree)

  现在应该得到这样的图:


  虽然它长得不怎么好看但是结构清晰啊2333……先写到这里吧,暂时也并没精力把这个图改一改……希望编程实现的过程讲地虽然啰嗦但还比较清楚……有问题欢迎指点~

4
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:56671次
    • 积分:859
    • 等级:
    • 排名:千里之外
    • 原创:26篇
    • 转载:1篇
    • 译文:0篇
    • 评论:24条
    最新评论