bzoj2727: [HNOI2012]双十字

原创 2016年01月03日 11:59:43

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2727

思路:

先预处理出c[i],down[i]

c[i]表示i点向两侧最多扩展多远(不包括自身,因为长度为1的横线显然是不合题意的)

down[i]表示向下扩展多远(也不包括自身,因为"下端必须严格低于两条水平线段")

这个可以通过O(R*C)的预处理求得


首先我们枚举竖线,因为竖线只有一根

然后考虑对竖线一个点i,它做下十字的中心时的方案数

枚举i上面的点j做上十字的中心

求出当前的top,表示最高能到的点的行号

分情况讨论

1.c[j]>c[i] 枚举下十字的长度len,因为c[j]>c[i],所以上十字一定有len-1种长度可取,上横线以上的竖线长度有(j-top)种,下横线一下的竖线长度有down[i]种

ans=Σ(len=1...c[i]-1)*(j-top)*down[i]

=c[i]*(c[i]-1)/2*(j-top)*down[i]


2.c[j]<=c[i],这时上十字的长度不够了,我们可以拿总方案-不合法的方案

总方案:c[i]*c[j]*(j-top)*(down[i])

不合法的方案:c[j]*(c[j]+1)/2*(j-top)*(down[i])

因为所有上十字长度大于等于下十字长度的都不合法,这时c[j]<=c[i],所以类似情况1,等差数列求和即可

ans=(c[i]*c[j]-c[j]*(c[j]+1)/2)*(j-top)*(down[i])


这时暴力得答案就有80分

但这还不够,显然这是可以用树状数组优化的

开3个树状数组,把式子中关于j的三个部分维护起来,下标就是c[i]

t1维护(-c[j]*(c[j]+1)/2)*(j-top)

t2维护c[j]*(j-top)

t3维护(j-top)


每次在树状数组里相应区间查即可。


坑:"(事实上R*C可能稍大于原设定)"

“两条水平的线段不能在相邻的两行”也就是树状数组不能做完i就插入i,而是插入i-1


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn=1300010,mod=1000000009,maxm=10010;
using namespace std;
int n,m,c[maxn],down[maxn],cnt;bool is[maxn];
int p(int x,int y){return (x-1)*m+y;}
struct Tbit{
	int ord[maxm],tot;ll v[maxn];
	void clear(){
		for (int i=1;i<=tot;i++)
			for (int j=ord[i];j<=m;j+=(j&(-j))) v[j]=0;
		tot=0;
	}
	void add(int x,ll val){
		ord[++tot]=x;
		for (;x<=m;x+=(x&(-x))) v[x]=(v[x]+val)%mod;
	}
	ll query(int x){
		ll res=0;
		for (;x;x-=(x&(-x))) res=(res+v[x])%mod;
		return res%mod;
	}
}t1,t2,t3;

void init(){
	scanf("%d%d%d",&n,&m,&cnt);
	for (int i=1,x,y;i<=cnt;i++) scanf("%d%d",&x,&y),is[p(x,y)]=1;
	
	for (int i=1;i<=n;i++){
		int now=0;
		for (int j=1;j<=m;j++){
			int t=p(i,j);
			if (is[t]) now=j;
			else c[t]=j-now-1;
		}
		now=m+1;
		for (int j=m;j;j--){
			int t=p(i,j);
			if (is[t]) now=j;
			else c[t]=min(c[t],now-j-1);
		}
	}
	for (int i=n;i;i--){
		for (int j=1;j<=m;j++){
			int t=p(i,j);
			if (is[t]) down[t]=-1;
			else if (i==n) down[t]=0;
			else down[t]=down[p(i+1,j)]+1;
		}
	}
}

//i在下,j在上
//c[j]<=c[i] ans=(c[i]*c[j]-c[j]*(c[j]+1)/2)*(j-top)*down[i]
//c[j]>c[i] ans=(c[i]-1)*c[i]/2*(j-top)*down[i]
//t1 -c[j]*(c[j]+1)/2*(j-top)
//t2 c[j]*(j-top)
//t3 (top-j)
void work(){
	ll ans=0;
	for (int j=1;j<=m;j++){
		t1.clear(),t2.clear(),t3.clear();
		int top=0;
		for (int i=1;i<=n;i++){
			int t=p(i,j);
			if (is[t]){top=i;t1.clear(),t2.clear(),t3.clear();continue;}
			ans+=t1.query(c[t])*down[t]%mod;
			ans+=t2.query(c[t])*c[t]*down[t]%mod;
			ans+=(t3.query(m)-t3.query(c[t]))*(c[t]-1)*c[t]/2*down[t]%mod;
			ans%=mod,t=p(i-1,j);
			if (i==1) continue;
			if (c[t]){
				t1.add(c[t],-1ll*c[t]*(c[t]+1)/2*(i-1-top-1));
				t2.add(c[t],c[t]*(i-1-top-1));
				t3.add(c[t],i-1-top-1);
			}
		}
	}
	printf("%lld\n",ans);
}

int main(){
	init(),work();
	return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

BZOJ 2727: [HNOI2012]双十字

如果你有一道题一上午都没调出来 那么一定是你取模取错了QAQ 下意识地对(1e9)+7取了模,现在才发现是(1e9)+9 这个首先推一下公式,然后开三个树状数组维护一下就好了 #include...

HNOI2012 双十字 DP+树状数组优化

题目链接:bzoj点我:-) 洛谷点我:-) 题目描述: 在C 部落,双十字是非常重要的一个部落标志。所谓双十字,由两条水平的和一条竖直的”1“线段组成,要求满足以下几个限制: ·两条水平的...

hnoi2012 (bzoj2727~2734)

题目就不贴了,自己看吧。 这套题每道题如果会做的话写代码的过程真是轻松加愉快……湖南人出的题似乎都是这样……真有水平…… hnoi2012 day1: bzoj2727 ...

BZOJ 2730 [HNOI2012]矿场搭建 点双联通分量(割点)

题意: 链接. 方法: 点双联通分量(割点). 解析:  首先这道题有两个问,并且是无向图 第一问是任意删掉一个点后,满足剩下所有的点均可以找到一个出口,则最少安放的出口数是多少? 第二问是满足...

[BZOJ2732][HNOI2012]射箭(二分+半平面交)

明天ATP就是一个在车上颓废的人辣!(这句话是不是NOIP之前也发过= =)

【HNOI2012】【BZOJ2729】排队

Description某中学有 n 名男同学,m 名女同学和两名老师要排队参加体检。他们排成一条直线,并且任意两名女同学不能相邻,两名老师也不能相邻,那么一共有多少种排法呢?(注意:任意两个人都是不同...

[并查集+启发式合并]BZOJ 2733——[HNOI2012]永无乡

Ps:又水听博主解释一下:昨天模拟赛遇到启发式的裸题,愣是打成左偏树的合并,惭愧惭愧。于是今天找到裸题练习一下。题目梗概有n个节点,每个节点有一个独一无二的权值。 合并一些节点。 询问一个节点所在...

bzoj2732【HNOI2012】射箭

二分答案+半平面交

[BZOJ2733][HNOI2012][启发式合并][平衡树]永无乡

题意给定n个点,每个点有权值,操作会联通某两个点的联通块,或询问某联通块中的第k大的点。对每个点维护一个平衡树,对于联通的操作启发式合并,把size小的树每个点暴力拆开,插入到size大的树中。#in...

BZOJ 2733 [HNOI2012] 永无乡 Treap

题目大意:给出n个只有一个元素的集合,有以下操作:集合合并,查集合第k小。查询集合内第k小,平衡树可以搞。合并怎么办?启发式合并。暴力拆解一个size比较小的,保证每个点至多被拆log(n)次。如果俩...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)