医学影像“调窗”(window-leveling)的算法

转载 2006年06月25日 16:08:00

图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。

技术问题:
    显示器往往只有 8-bit, 而数据有 12- 至 16-bits。
    如果将数据的 min 和 max 间 (dynamic range) 的之间转换到 8-bit 0-255 去,过程是个有损转换, 而且出来的图像往往突出的是些噪音。

针对这些问题,研究人员先提出一些要求 (requirements),然后根据这些要求提出了一些算法。这些算法现在都很成熟。

要求一:充分利用 0-255 间的显示有效值域
要求二:尽量减少值域压缩带来的损失
要求三:不能损失应该突出的组织部分

算法分析:
A.  16-bit 到 8-bit 直接转换:

   computeMinMax(pixel_val, min, max); // 先算图像的最大和最小值
   for (i = 0; i < nNumPixels; i++)
     disp_pixel_val[i] = (pixel_val[i] - min)*255.0/(double)(max - min);

这个算法必须有,对不少种类的图像是很有效的:如 8-bit 图像,MRI, ECT, CR 等等。

B. Window-leveling 算法: W/L 是专门为 CT 设计的。原理很简单:CT 图像里不同组织的密度 (用 Hounsfield 单位) 是在固定的值域, 与具体设备和成像软件没有关系。因此,要看头颅时, 我们只需将头颅的值域转换到 0-255 就行了。

CT W/L 不讲头颅值域的 min 和 max, 而说 max - min (即 window_width) 和 (max+min)/2 (即 window_center)。

我们还可以用原来的公式,只是 min 和 max 的算法不一样。

  // 先算图像的最大和最小值
  min = (2*window_center - window_width)/2.0 + 0.5;
  max = (2*window_center + window_width)/2.0 + 0.5;
   for (i = 0; i < nNumPixels; i++)
     disp_pixel_val[i] = (pixel_val[i] - min)*255.0/(double)(max - min);

请注意,CT 图像必须先转换成 Hounsfield 值再做 window-level。 这个转换包括将多余高位 bits 变成 0 (clipping), 和用 recale slope 和 rescale intercept 来做单位转换。

HU[i] = pixel_val[i]*rescale_slope + rescale_intercept

C.非线性转换

我刚刚说的是将 min 和 max 间的数值线性转换到 0-255 之间。 如果 max - min 出来是个很大的数值,比如说 25500, 那就说每 100 原始密度会压缩成一个显示灰度。 这样的损失可能会很大。

因为人眼对灰度地反应式是非线性的,非线性转换可以解决一些问题。 常用算法有 log 和 gamma 两种。gamma 比较好调 gamma 值,因此用得比较多。

for (i = 0; i < nNumPixels; i++)
    disp_pixel_val[i] = 255.0 * pow(pixel_value[i]/(max-min), 1.0/gamma);

D. 有效值域:CT 的 Window-level 有标准的定义,请参看 “Practical CT Techniques", by Wladyslaw Gedroyc and Sheila Rankin, Springer-Verlag。最常用到的有 WW = 400, WL = 40 (实用许多部位); WW = 100, WL = 36 (头);WW = 3200, WL = 200 (骨头),等等。

补充几点:

o   在做任何转换时要注意有效灰度域外的数值的处理。
   最好先用 int 而非 unsigned char 来算,再转入矩阵,以避免 overflow 和 underflow。

   double dFactor = 255.0/(double)(max - min);
   int nPixelVal;

   for (i = 0; i < nNumPixels; i++)
   {

     nPixelVal = (int) ((pixel_val[i] - min)*dFactor);

     if (nPixelVal < 0)    
       disp_pixel_val[i] = 0;
     else if (nPixelVal > 255)
      disp_pixel_val[i] = 255;
     else
      disp_pixel_val[i] = nPixelVal;

   }
  

o   做 window-level 时要注意 min 和 max 之外原始数据的处理

   double dFactor, min, max;
   int nPixelVal;

   min = (2*window_center - window_width)/2.0 + 0.5;
   max = (2*window_center + window_width)/2.0 + 0.5;
   dFactor = 255.0/(double)(max - min);

   for (i = 0; i < nNumPixels; i++)
  {
     if (pixel_val[i] < min)
     {
       disp_pixel_val[i] = 0;
       continue;
     }

     if (pixel_val[i] > max)
     {
       disp_pixel_val[i] = 255;
       continue;
     }

     nPixelVal = (int)((pixel_val[i] - min)*dFactor);

     if (nPixelVal < 0)    
       disp_pixel_val[i] = 0;
     else if (nPixelVal > 255)
      disp_pixel_val[i] = 255;
     else
      disp_pixel_val[i] = nPixelVal;

  }

举报

相关文章推荐

VS2012找不到SDKDDKVer.h的Bug修复

Visual Studio 2012找不到SDKDDKVer.h的Bug修复方法,通过手工修改props配置文件完美解决。

VS2015找不到stdio.h或new.h的Bug修复

今天尝试安装了VS2015,发现微软还是没有处理好一台计算机安装多个VS版本时环境配置问题。无论是建立Console控制台程序还是MFC程序,都提示缺少"stdio.h"或"new.h"头文件。VS工...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

成熟的医学影像“调窗”(window-leveling)算法详解

图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。 技术问题:    显示器往往只有 8-bit, ...

成熟的医学影像“调窗”(window-leveling)算法详解

图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。   技术问题:     显示器往往...
  • liyjw
  • liyjw
  • 2013-05-08 09:48
  • 617

计算机X射线成像图像处理

Pieter Vuylsteke, Emile Schoeters,Agfa-Gevaert N.V.,Mortsel,B.: "Image Processing in Computed Radiog...
  • utimes
  • utimes
  • 2013-03-01 13:27
  • 2194

大端(Big Endian)与小端(Little Endian)详解

Byte Endian是指字节在内存中的组织,所以也称它为Byte Ordering,或Byte Order。  对于数据中跨越多个字节的对象, 我们必须为它建立这样的约定:(1) 它的地址是多少?(...
  • utimes
  • utimes
  • 2013-02-09 19:26
  • 1178

关于剂量的解释

在Fixed (固定的)曝光模式和AEC 曝光模式下,患者剂量的估计在每次采集后计算并随机显示为图像注释的一部分。此信息同样被存储在每一幅图像(RAW (原始)图像和相应的PROCESSED (处理)...
  • utimes
  • utimes
  • 2013-01-27 14:38
  • 2044
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)