BloomFilter布隆过滤器使用

标签: 布隆过滤器反垃圾邮件大数据查重
495人阅读 评论(0) 收藏 举报
分类:

从上一篇可以得知,BloomFilter的关键在于hash算法的设定和bit数组的大小确定,通过权衡得到一个错误概率可以接受的结果。

算法比较复杂,也不是我们研究的范畴,我们直接使用已有的实现。

google的guava包中提供了BloomFilter类,我们直接使用它来进行一下简单的测试。

新建一个maven工程,引入guava包

<dependencies>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>22.0</version>
        </dependency>
    </dependencies>

测试分两步:

一 我们往过滤器里放一百万个数,然后去验证这一百万个数是否能通过过滤器,目的是校验是坏人是否一定被抓。

二 我们另找1万个不在这一百万范围内的数,去验证漏网之鱼的概率,也就是布隆过滤器的误伤情况。

import com.google.common.hash.BloomFilter;
import com.google.common.hash.Funnels;

import java.util.ArrayList;
import java.util.List;

/**
 * Created by admin on 17/7/7.
 * 布隆过滤器
 */
public class Test {
    private static int size = 1000000;

    private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size);

    public static void main(String[] args) {
        for (int i = 0; i < size; i++) {
            bloomFilter.put(i);
        }

        for (int i = 0; i < size; i++) {
            if (!bloomFilter.mightContain(i)) {
                System.out.println("有坏人逃脱了");
            }
        }

        List<Integer> list = new ArrayList<Integer>(1000);
        for (int i = size + 10000; i < size + 20000; i++) {
            if (bloomFilter.mightContain(i)) {
                list.add(i);
            }
        }
        System.out.println("有误伤的数量:" + list.size());
    }
}

运行后发现,没有坏人逃脱,当我们去遍历这一百万个数时,他们都在过滤器内被识别了出来。

误伤的数量是330.也就是有330个不在过滤器内的值,被认为在过滤器里,被误伤了。

错误概率是3%作用,为毛是3%呢。我们跟踪源码看一下就知道了。


在create的多个重载方法中,最终走的是有4个参数的那个。我们上面用的是有2个参数的,注意看图片最下面,我们不填第三方参数时,默认补了一个0.03,这个就代表了允许的错误概率是3%。第四个参数是哈希算法,默认是BloomFilterStrategies.MURMUR128_MITZ_64,这个我们不去管它,反正也不懂。

在第127行可以看到,要存下这一百万个数,位数组的大小是7298440,700多万位,实际上要完整存下100万个数,一个int是4字节32位,我们需要4X8X1000000=3千2百万位,差不多只用了1/5的容量,如果是HashMap,按HashMap 50%的存储效率,我们需要6千4百万位,所有布隆过滤器占用空间很小,只有HashMap的1/10-1/5作用。

128行是hash函数的数量,是5,也就是说系统觉得要保证3%的错误率,需要5个函数外加700多万位即可。用3%误差换十分之一的内存占用。

我们也可以修改这个错误概率,譬如我们改为0.0001万分之一。

private static BloomFilter<Integer> bloomFilter = BloomFilter.create(Funnels.integerFunnel(), size, 0.0001);
再次运行看看



我们将28行改为10万个数,发现结果为“误伤12”。可以看到这个概率是比较靠谱的。

当概率为万分之一时,我们看看空间占用。


此时bit容量已经从700多万到1900万了,函数数量也从5变成了13.概率从3%缩减到万分之一。

这就是布隆过滤器的简单使用。具体的应用场景,具体实现。


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:140918次
    • 积分:2104
    • 等级:
    • 排名:第18959名
    • 原创:72篇
    • 转载:21篇
    • 译文:0篇
    • 评论:38条
    博客专栏
    最新评论