HDU3555 Bomb【数位DP+记忆化搜索】

Bomb

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 23077    Accepted Submission(s): 8683


 

Problem Description

The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?

 

 

Input

The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.

 

 

Output

For each test case, output an integer indicating the final points of the power.

 

 

Sample Input

3 1 50 500

 

 

Sample Output

0 1 15

Hint

From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.

 

 

Author

fatboy_cw@WHU

 

 

Source

2010 ACM-ICPC Multi-University Training Contest(12)——Host by WHU

 

问题链接HDU3555 Bomb

问题简述

  计算[1,n]中含有49数的个数。

问题分析

  这是一个数位DP问题。

  数位DP一般应用于求出在给定区间[A,B]内,符合条件P(i)的数i的个数,条件P(i)一般与数的大小无关,而与数的组成有关。

  实际计算时,可以采用记忆化搜索实现,已经搜索过的就不再搜索。这种计算也可以称为记忆化计算,已经计算过的就不再计算,可以避免重复的计算,加快计算速度。

  数位DP可以采用直接搜索和记忆化搜索两种方式来处理。

程序说明

  记忆化搜索:

  设计数组dp[][]是一个关键!不同的问题略有不同,有经验后就简单了。

  数组dp[][]的元素初始化为-1,表示其值尚未计算得到,需要用函数dfs()进行计算。初始化应该放在主函数中循环处理之前进行,可以最大限度避免重复计算。

  函数solve(n)的功能是计算(0,n]的满足条件的数的个数。做法是将n的各位分解成数字位0-9,放入数组digits[]中,个位放 在digits[0]中,即低位放在下标小的数组元素中,高位放在下标大的数组元素中。然后通过深度优先搜索函数dfs(),根据数组digits[]指 定的数去搜索。

  有关limit变量,以n=5676为例,简单说明如下:

  1.开始时从最高位开始搜索,即从千位5开始,可取的数字只能是0-5(首次调用函数limit的实参是1,即只能取0-5);

  2.千位若取0-4,百位可取的值则为0-9;

  3.千位若取5,百位可取的值就只能取1-6(6是n的百位数字);

  4.根据前2条,就用参数limit来控制下一个数位的取值范围,在搜索的时候就看是否i==digits[pos],不等的话limit取值 false,下一位(低一位)取值范围则为0-9,否则limit取值true,下一位(低一位)取值范围则为0-x,x为下一位的数字。

题记:(略)

参考链接:(略)

 

AC的C++语言程序(数位DP+记忆化搜索,简洁易懂)如下:

/* HDU3555 Bomb */

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int N = 20;  // 位数,long long类型实际不超过19位,这里用20
const int D = 10;  // 10进制数字的个数
int digits[N + 1];
LL dp[N][D];  // dp[i][d]-共i位,前导为数字d的满足条件(不含49)数的数量

/*
 * 参数:
 * pos - 数位位置,即当前处理数的第几位,从高位开始
 * pre - 前导,即前一位数字
 * limit - 是否为数位上界(最大数字)
 */
LL dfs(int pos, int pre, bool limit)
{
    if(pos == -1)   // 递归边界,已经枚举结束,则1个数满足条件
        return 1;
    if(!limit && dp[pos][pre] != -1)  // 已经搜索过的不再搜索,直接使用之前的计算结果
        return dp[pos][pre];

    // 计数
    LL ans = 0;
    int maxd = limit ? digits[pos] : 9;  // 枚举数字,如果数字不同则枚举0-9
    for(int i = 0; i <= maxd; i++) {
        if(pre == 4 && i == 9)
            ;
        else
            ans += dfs(pos - 1, i, limit && i == digits[pos]);
    }
    if(!limit)
        dp[pos][pre] = ans;

    return ans;
}

// 计算[0,n]中不含49的数的数量
LL solve(LL n)
{
    int len = 0;
    while(n) {
        digits[len++] = n % 10;
        n /= 10;
    }
    return dfs(len - 1, 0, 1);
}

int main()
{
    memset(dp, -1, sizeof(dp));

    int t;
    scanf("%d", &t);
    while(t--) {
        LL n;
        scanf("%lld", &n);

        printf("%lld\n", n - (solve(n) - 1));  // 需要去除0,所以要减去1
    }

    return 0;
}

 

AC的C++语言程序(数位DP+记忆化搜索)如下:

/* HDU3555 Bomb */

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int N = 20;
int digits[N + 1];
LL dp[N][3];
// dp[i][0]-共i位,不含49数的数量
// dp[i][1]-共i位,不含49,高位为9数的数量
// dp[i][2]-共i位,含有49数的数量

/*
 * 参数:
 * pos - 数位位置,即当前处理数的第几位,从高位开始
 * pre - 前导,即前一位数字
 * limit - 是否为数位上界(最大数字)
 */
LL dfs(int pos, int pre, bool limit)
{
    if(pos == -1)   // 递归边界,已经枚举结束,这个数含有49则1个
        return pre == 2 ? 1 : 0;
    if(!limit && dp[pos][pre] != -1)  // 已经搜索过的不再搜索,直接使用之前的计算结果
        return dp[pos][pre];

    // 计数
    LL ans = 0;
    int maxd = limit ? digits[pos] : 9;  // 枚举数字,如果数字不同则枚举0-9
    for(int i = 0; i <= maxd; i++) {
        if(pre == 2 || (pre == 1 && i == 9))
            ans += dfs(pos - 1, 2, limit && i == maxd);
        else if(i == 4)
            ans += dfs(pos - 1, 1, limit && i == maxd);
        else
            ans += dfs(pos - 1, 0, limit && i == maxd);
    }
    if(!limit)
        dp[pos][pre] = ans;

    return ans;
}

LL solve(LL n)
{
    int len = 0;
    while(n) {
        digits[len++] = n % 10;
        n /= 10;
    }
    return dfs(len - 1, 0, 1);
}

int main()
{
    memset(dp, -1, sizeof(dp));

    int t;
    scanf("%d", &t);
    while(t--) {
        LL n;
        scanf("%lld", &n);

        printf("%lld\n", solve(n));
    }

    return 0;
}

 

AC的C++语言程序(数位DP)如下:

 

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值