转自梦醒潇湘 http://blog.chinaunix.net/uid-26548237-id-3364131.html
先收藏起来,往后慢慢研究。。
*****************************************以下为正文******************************************************
今天,关于素数问题纠结了好久好久,倍感知识缺乏啊。因此,通过自己的了解和网上查阅资料,加上自己的啰嗦,在这里整理一下,日后可以翻阅。
     首先,感谢网上的前辈,如果没有您们,我不会获得关于素数的比较全面的知识。非常感谢。
 
 
 
  1、素数及相关
 
 
 
     素数,又称质数,在一个大于1的自然数中,除了1和此整数自身之外,不能被其他自然数整除的数。
 
 
 
     比1大但不是素数的数称为合数。
 
 
 
     1和0既不是素数,也不是合数。
 
 
 
     算术基本定理证明每个大于1的正整数都可以写成素数的乘积,并且这种乘积的形式是唯一的。
 
 
 
  2、试除法求素数
 
 
 
     算法描述:根据素数的定义可知,不能被1和自身外的整数整除的数为素数。所以,我们可以得知,判断一个素数是否为素数只要看它是否能被2~sqrt(i)间的数整数即可。而求N内所有素数则是循环重复上述过程。
 
 
 
     C语言实现如下所示。
 
 
 - #include <stdio.h>
 - #include <time.h>
 - #include <math.h>
 - #include <malloc.h>
 - //试除法
 - #define NUM 10000
 
- int Test_prime(int n)
 - {
 -     int count = 0;
 -     int i, j;
 -     int *num= (int*)malloc(sizeof(int)* n);
 -     num[count++]= 2;
 -      
 -     for(i  = 3; i <= n; i++)
 -     {
 -         for(j= 2; j <= sqrt(i); j++)
 -         {
 -             if(i% j == 0)
 -             {
 -                 break;
 -             }
 -         }
 -         if(j> sqrt(i))
 -         {
 -             num[count++]= i;
 -         }
 -     }
 -     free(num);
 -     return count;
 - }
 - int main()
 - {
 -     int count;
 -     clock_t start,end;
 -     start = clock();
 -     count = Test_prime(NUM);
 -     end = clock();
 -     printf("%d 内的素数个数为:%d, 总共耗时为:%d 毫秒\n", NUM, count,end - start);
 
-     return 0;
 - }
 
     
  测试结果如下所示(测试在VC6.0下进行)。
 
 
  
 
    
  从上面可以看出,当数据很大时,时间消耗增长的比较快。
 
 
 
  3、试除法的优化方案
 
 
 
     仔细研究试除法,可以发现以下几个问题:
 
 
 
     1> 在循环条件中重复调用了sqrt(i),这显然是比较浪费时间的;
 
 
 
     2> 判断素数,真的需要拿2-sqrt(i)间的所有整数去除吗?我们知道,合数都可以分解成若干质数,所以,只要2-sqrt(i)间的质数不能整除i即可;
 
 
 
     C语言实现如下所示。
 
 
 点击(此处)折叠或打开
- //求N内的所有素数
 - #include <stdio.h>
 - #include <time.h>
 - #include <math.h>
 - #include <malloc.h>
 - //试除法
 - #define NUM 1000000
 
- int Test_prime(int n)
 - {
 -     int count = 0;
 -     int i, j, k, stop;
 -     //分配空间
 -     int *num= (int*)malloc(sizeof(int)* n);
 -     //2肯定是素数
 -     num[count++]= 2;
 -     stop = 0;
 -     for(i  = 3; i <= n; i++)
 -     {
 -         //在循环中重复调用sqrt是低效做法,故引入k
 -         k = (int)sqrt(i);
 -         //stop的作用是:统计小于当前k值的质数的数目
 -         while(num[stop]<= k && stop  < count)
 -         {
 -             stop++;
 -         }
 -         for(j= 0; j < stop; j++)
 -         {
 -             if( i% num[j]== 0)
 -             {
 -                 //i不能被2-sqrt(i)间的素数整除,自然不能被其他整数整除,所以为素数
 -                 break;
 -             }
 -         }
 -         if(j== stop)
 -         {
 -             num[count++]= i;
 -         }
 -         
 -     }
 -     free(num);
 -     return count;
 - }
 - int main()
 - {
 -     int count;
 -     clock_t start,end;
 -     start = clock();
 -     count = Test_prime(NUM);
 -     end = clock();
 -     printf("%d 内的素数个数为:%d, 总共耗时为:%d 毫秒\n", NUM, count,end - start);
 -     
 -     return 0;
 - }
 
     
  相对于优化前的算法,时间提供了很多。特别是在时间增长曲线的幅度变小了,N值越大,优化后的算法比优化后的算法效率更高。
 
 
 
  4、合数过滤筛选法
 
 
 
     算法描述:由质数的定义可以知道,质数N不能被2-(N-1)间的任何整数整除;反过来看,只要能被2-(N-1)间的任何整数整除的N,都不是素数。所以,我们采用排除法:就是对N以内的所有数,只要逐个 去除 值为2-(N-1)的倍数的数,剩下的就是素数。
 
 
 
     C语言实现如下所示。
 
 
 - //合并筛选法
 - #include <stdio.h>
 - #include <time.h>
 - #include <math.h>
 - #include <malloc.h>
 - //试除法
 - #define NUM 10000
 
- int Test_prime(int n)
 - {
 -     int count = 0;
 -     int i, j;
 -     //分配空间,之所以是n+1,是因为浪费了一个num[0]
 -     char *num =(char *)malloc(sizeof(char)* (n + 1));
 
-     //初始化素数标记
 -     for(i  = 2; i<= n; i++)
 -     {
 -         num[i]= 1;
 -     }
 -     //以2-(N-1)为因子过滤合数
 -     for(i  = 2; i <= n-1; i++)
 -     {
 -         for(j= 2; j * i <= n; j++)
 -         {
 -             //i*j是由两整数相乘而得,显然不是素数
 -             num[i*j]= 0;
 -         }
 -     }
 -     //统计素数个数
 -     for( i  = 2; i<= n; i++)
 -     {
 -         if( 1== num[i])
 -         {
 -             count++;
 -         }
 -     }
 -     free(num);
 -     return count;
 - }
 - int main()
 - {
 -     int count;
 -     clock_t start,end;
 -     start = clock();
 -     count = Test_prime(NUM);
 -     end = clock();
 -     printf("%d 内的素数个数为:%d, 总共耗时为:%d 毫秒\n", NUM, count,end - start);
 -     
 -     return 0;
 - }
 
     
  上述程序好多地方采用了比较低效的做法,为了与后文的优化作比较,这也是像我一样的初学者通常采用的版本,因此,要学会优化。
 
 
 
  5、合并筛选法优化方案
 
 
 
     上述算法存在的问题是:
 
 
 
     1> 在外层循环,需要一直执行到n-1嘛?不要,因为n/2-(n-1)之间的数显然不能整除出n;
 
 
 
     2> 在内层循环中重复使用i*j显然是低效的,考虑到计算机中加减运算速度比乘除快,可以考虑变乘法为加法;
 
 
 
     3> 在循环修改flag的过程中,其实有很多数被重复计算若干次,比如6 = 2*3 = 3*2,被重复置零,所以,可以进行避免;
 
 
 
     C语言实现如下所示。
 
 
 点击(此处)折叠或打开
- //合并筛选法的优化方案
 - #include <stdio.h>
 - #include <time.h>
 - #include <math.h>
 - #include <malloc.h>
 
- #define NUM 300000
 
- int Test_prime(int n)
 - {
 -     int count = 0;
 -     int i, j;
 -     //分配空间
 -     char *num =(char *)malloc(sizeof(char)* (n + 1));
 -     
 -     //初始化素数标记
 -     num[2]  = 1;
 -     //注意此处是i<n,上例中的i<=n
 -     for(i  = 3; i< n; i++)
 -     {
 -         num[i++]= 1;
 -         num[i]= 0;//偶数自然不是素数
 -     }
 -     //如果n为奇数
 -     if(n  % 2 != 0)
 -     {
 -         num[n]= 1;
 -     }
 -     //从3开始过滤,因为,2的倍数在初始化中去掉了
 -    for(i = 3; i <= n/2; i++)
 -     {
 -         if(0 == num[i] )
 -         {
 -             continue;
 -         }
 -         //从i的2倍开始过滤
 -         for(j = i + i; j <= n;j+=i)
 -         {
 -             num[j] = 0;
 -         }
 -     }
 -     //统计素数个数
 -     for( i  = 2; i<= n; i++)
 -     {
 -         if( 1== num[i])
 -         {
 -             count++;
 -         }
 -     }
 -     free(num);
 -     return count;
 - }
 - int main()
 - {
 -     int count;
 -     clock_t start,end;
 -     start = clock();
 -     count = Test_prime(NUM);
 -     end = clock();
 -     printf("%d 内的素数个数为:%d, 总共耗时为:%d 毫秒\n", NUM, count,end - start);
 -     
 -     return 0;
 - }
 
    确实比先前快了很多,优化真的可以带来时间的提高,这样我很是欣喜。
 
 
 
     后来想到进行添加补充:
 
 
 
     如果我对上述红色部分代码进行优化,如下所示。
 
 
 点击(此处)折叠或打开
- //从3开始过滤,因为,2的倍数在初始化中去掉了
 -     for(i  = 3; i <= n/2;i = i + 2)
 -     {
 -         //在这里进行判断,就已经具有剔除了偶数的功能
 -         if(0== num[i])
 -         {
 -             continue;
 -         }
 -         //从i的2倍开始过滤
 -         for(j= i + i; j<= n;j+=i)
 -         {
 - //是直接进行赋值快呢?还是在此处加上判断快呢??不晓得啊?求解。。
 -            if( j % 2 == 0)
 -             {
 -                 continue;
 -             }
 -             else
 -             {
 -                 num[j]= 0;
 -             }
 -         }
 - }
 
     第二部分红色,我将奇数的倍数为偶数的直接剔除,变成只对倍数为奇数的进行赋值;
 
 
 
     以上两者改变,都基于开始时,已经将偶数剔除。
 
 
 
     对NUM = 300000测试如下所示。
 
 
 
     时间仅为7毫秒,比 优化前NUM = 300000时,时间更快。
 
 
 
  6、继续优化
 
 
 
     C语言实现代码如下所示。
 
 
 点击(此处)折叠或打开
- //合并筛选法的优化方案
 - #include <stdio.h>
 - #include <time.h>
 - #include <math.h>
 - #include <malloc.h>
 - #include <string.h>
 - #define NUM 10000
 
- int Test_prime(int n)
 - {
 -     int i, j;
 -     // 素数数量统计
 -     int count = 0;
 -     // 分配素数标记空间,明白+1原因了吧,因为浪费了一个num[0]
 -     char *num =(char*)malloc( n+1);
 -     // 干嘛用的,请仔细研究下文
 -     int mpLen = 2*3*5*7*11*13;
 -     char magicPattern[2*3*5*7*11*13];
 -     // 奇怪的代码,想!
 -     for (i=0; i<mpLen; i++)
 -     {
 -         magicPattern[i++]= 1;
 -         magicPattern[i++]= 0;
 -         magicPattern[i++]= 0;
 -         magicPattern[i++]= 0;
 -         magicPattern[i++]= 1;
 -         magicPattern[i]= 0;
 -     }
 -     for (i=4; i<=mpLen; i+=5)
 -     {
 -         magicPattern[i]= 0;
 -     }
 -     for (i=6; i<=mpLen; i+=7)
 -     {
 -         magicPattern[i]= 0;
 -     }
 -     for (i=10; i<=mpLen; i+=11)
 -     {
 -         magicPattern[i]= 0;
 -     }
 -     for (i=12; i<=mpLen; i+=13)
 -     {
 -         magicPattern[i]= 0;
 -     }
 -     
 -     // 新的初始化方法,将2,3,5,7,11,13的倍数全干掉
 -     // 而且采用memcpy以mpLen长的magicPattern来批量处理
 -     int remainder  = n%mpLen;
 -     char* p = num+1;
 -     char* pstop = p+n-remainder;
 -     while (p< pstop)
 -     {
 -         memcpy(p, magicPattern, mpLen);
 -         p += mpLen;
 -     }
 -     if (remainder> 0)
 -     {
 -         memcpy(p, magicPattern, remainder);
 -     }
 -     num[2]  = 1;
 -     num[3]  = 1;
 -     num[5]  = 1;
 -     num[7]  = 1;
 -     num[11]= 1;
 -     num[13]= 1;
 -     
 -     // 从17开始过滤,因为2,3,5,7,11,13的倍数早被去掉了
 -     // 到n/13止的
 -     int stop = n/13;
 -     for (i=17; i<= stop; i++)
 -     {
 -         // i是合数
 -         if (0== num[i])
 -         {
 -             continue;
 -         }
 -         
 -         // 从i的17倍开始过滤
 -         int step= i*2;
 -         for (j=i*17; j<= n; j+=step)
 -         {
 -             num[j]= 0;
 -         }
 -     }
 -     
 -     // 统计素数个数
 -     for (i=2; i<=n; i++)
 -     {
 -         if (num[i])
 -         {
 -             count++;
 -         }
 -     }
 -     
 -     // 释放内存
 -     free(num);
 -     
 -     return count;
 - }
 - int main()
 - {
 -     int count;
 -     clock_t start,end;
 -     start = clock();
 -     count = Test_prime(NUM);
 -     end = clock();
 -     printf("%d 内的素数个数为:%d, 总共耗时为:%d 毫秒\n", NUM, count,end - start);
 -     
 -     return 0;
 - }
 
     
  说实话,这种思想真的很赞,现在的我是无法想到的,感谢作者,让我有了更广泛的见识。
 
 
 
  7、其他
 
 
 
     除了以上几种算法外,如拉宾米勒素数测试算法,感觉这个算法比较难,先好好看看,等弄懂了,然后补上。
 
 
 
     通过今天的纠结,对于求素数有了更加深刻的了解和认识,感觉自己还差很多,需要更加的努力。
 
 
 
     另外,感谢来自百度空间的作者
  doforfun_net,给我了很大的启发,学到了很多。
 
 
 
                                                        梦醒潇湘
 
 
 
                                                    2012-10-3 20:15
 
 
  
  
  
                  
                  
                  
                  
                            
本文详细介绍了多种求解素数的算法,包括试除法及其优化、合数过滤筛选法及进一步优化等,并通过实际测试对比了不同算法的效率。
          



      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					1868
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            