大数据IMF传奇行动绝密课程第42课:Checkpoint内幕解密

原创 2016年08月29日 11:11:34

Broadcast内幕解密

1、Broadcast彻底解析
2、Broadcast源码彻底详解
3、Broadcast最佳实践

一、Broadcast彻底解析
1、Broadcast就是将数据从一个节点发送到其它的节点上。例如Driver上有一张表,而Executor中的每个并行执行的Task(100万个Task)都要查询这张表,那我们通过Broadcast的方式就只需要往每个Executor把这张表发送一次就行了,Executor中的每个运行的Task查询这张唯一的表,而不是每次执行的时候都从Driver中获得这张表。
2、这就好像ServletContext的具体作用,只是Broadcast是分布式的共享数据,默认情况下只要程序在运行,Broadcast变量就会存在,因为Broadcast在底层是通过BlockManager管理的!但是你可以手动指定或者配置具体周期来销毁Broadcast变量。
3、Broadcast一般用于处理共享配置文件、通用的Dataset、常用的数据结构等等;但是不适合存放太大的数据在Broadcast,Broadcast不会内存溢出,因为其数据保存的StorageLevel是MEMORY_AND_DISK的方式。虽然如此,我们也不可以放入太大的数据在Broadcast中,因为网络IO和可能的单点压力会非常大。
4、广播Broadcast变量是只读变量,最为轻松保持了数据的一致性
5、Broadcast的使用

{{{
scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)

scala> broadcastVar.value
res0: Array[Int] = Array(1, 2, 3)
}}}

6、HttpBroadcast方式的Broadcast,最开始的时候数据放在Driver的本地文件系统中,Driver在本地会创建一个文件夹来存放Broadcast中的data,然后启动HttpServer来访问文件夹中的数据,同时写入到BlockManager中(StorageLevel是MEMORY_AND_DISK)获得BlockId(BroadcastBlockId),当第一次Executor中的Task要访问Broadcast变量的时候,会向Driver通过HttpServer来访问数据,然后会在Executor中的BlockManager中注册该Broadcast中的数据给BlockManager,这样后续的Task需要访问Broadcast的变量的时候会首先查询BlockManager中有没有该数据,如果有就直接使用;
7、BroadcastManager是用来管理Broadcast的,该实例对象是在SparkContext创建SparkEnv的时候创建的

// Called by SparkContext or Executor before using Broadcast
private def initialize() {
    synchronized {
      if (!initialized) {
        val broadcastFactoryClass =
          conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.TorrentBroadcastFactory")

        broadcastFactory =
          Utils.classForName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]

        // Initialize appropriate BroadcastFactory and BroadcastObject
        broadcastFactory.initialize(isDriver, conf, securityManager)

        initialized = true
      }
    }
}

在实例化BroadcastManager的时候会创建BroadcastFactory工厂来构建具体实际的Broadcast类型,默认情况下是TorrentBroadcastFactory
8、HttpBroadcast存在单点故障,和网络IO等性能问题,所以默认使用TorrentBroadcast的方式,开始数据在Driver中,假设A节点用了数据,B访问的时候A节点就变成数据源,依次类推,都是数据源,当然是被BlockManager进行管理的,数据源越多,节点压力会大大降低
9、TorrentBroadcast按照BLOCK_SIZE(默认是4MB)将Broadcust中的数据划分成为不同的Block,然后将分块信息也就是meta信息存放到Driver的BlockManager中,同时会告诉BlockManagerMaster说明Meta信息存放完毕

相关文章推荐

大数据IMF传奇行动绝密课程第41课:Checkpoint彻底解密

Checkpoint彻底解密1、Checkpoint重大价值 2、Checkpoint运行原理图 3、Checkpoint源码解析一、Checkpoint到底是什么? 1、Spark在生产环境下...

大数据IMF传奇行动绝密课程第33课:Spark Executor内幕彻底解密

Spark Executor内幕彻底解密一、Spark Executor工作原理图 二、ExecutorBackend注册源码揭秘 三、Executor实例化内幕 四、Executor具体是如何...

大数据IMF传奇行动绝密课程第37课:Task执行内幕与结果处理解密

Task执行内幕与结果处理解密1、Task执行原理流程图 2、Task执行内幕源码解密 3、Task执行结果在Driver上处理解密一、Task执行及结果处理原理流程图和源码解密 1、当Coar...

大数据IMF传奇行动绝密课程第36课:TaskScheduler内幕天机解密

TaskScheduler内幕天机解密1、TaskScheduler与SchedulerBackend 2、FIFO与FAIR两种调度模式彻底解密 3、Task数据本地性资源分配源码实现一、通过s...

大数据IMF传奇行动绝密课程第25课:Spark Sort-Based Shuffle内幕彻底解密

Spark Sort-Based Shuffle内幕彻底解密1、为什么使用Sort-Based Shuffle内幕彻底解密 2、Sort-Based Shuffle实战 3、Sort-Based ...

大数据IMF传奇行动绝密课程第15课:RDD创建内幕彻底解密

RDD创建内幕彻底解密为什么RDD有很多种创建方法因为Spark运行的介质、硬件存储不同Spark和Hadoop有没有关系? 没关系,Spark可以以Hadoop作为存储 学Spark有没有必要学...

大数据IMF传奇行动绝密课程第63课:Spark SQL下Parquet内幕深度解密

Spark SQL下Parquet内幕深度解密1、Spark SQL下的Parquet意义再思考 2、Spark SQL下的Parquet内幕揭秘一、Spark SQL下的Parquet意义再思考 ...

大数据IMF传奇行动绝密课程第31课:Spark资源调度分配内幕天机彻底解密

Spark资源调度分配内幕天机彻底解密一、分配Driver(Cluster) 二、为Application分配资源 三、两种不同的资源分配方式彻底揭秘 四、Spark资源分配的思考一、任务调度与...

大数据IMF传奇行动绝密课程第25课:Spark Sort-Based Shuffle内幕彻底解密

Spark Sort-Based Shuffle内幕彻底解密1、为什么使用Sort-Based Shuffle内幕彻底解密 2、Sort-Based Shuffle实战 3、Sort-Based ...

大数据IMF传奇行动绝密课程第90课:SparkStreaming基于Kafka Receiver案例实战和内幕源码解密

SparkStreaming基于Kafka Receiver案例实战和内幕源码解密1、sparkStreaming on Kafka Receiver工作原理机制 2、sparkStreaming ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:大数据IMF传奇行动绝密课程第42课:Checkpoint内幕解密
举报原因:
原因补充:

(最多只允许输入30个字)