大数据IMF传奇行动绝密课程第43课:Spark 1.6 Rpc内幕解密

原创 2016年08月29日 11:13:12

Spark 1.6 Rpc内幕解密

1、Spark 1.6 Rpc内幕解析
2、RpcEnv源码彻底详解
3、RpcEndpoint等源码解析

图43-1 RPC消息发送图

一、Spark 1.6 Rpc解析
1、Spark 1.6推出了以RpcEnv、RPCEndpoint、RpcEndpointRef为核心的新型架构下的RPC通信方式,就目前的实现而言,其底层依旧是Akka;
2、Akka是基于Actor的分布式消息通信系统,而在Spark 1.6中封装了Akka,提供更高层的Rpc实现,目的是移除对Akka的依赖,为扩展和自定义Rpc打下基础
二、RpcEnv解析
1、RpcEnv是RPC的环境(相当于Akka中的ActorSystem),所有的RpcEndpoint都需要注册到RpcEnv的实例对象中(注册的时候会指定注册的名称,这样客户端就可以通过名称查询到RPCEndpoint的RPCEndpointRef引用,进而进行通信),在RpcEndpoint接收到消息后会调用receive方法进行处理
2、RPCEndpoint如果接收到需要reply的消息的话就会交给自己的receiveAndReply来处理(回复时是通过RpcCallContext中的reply方法来回复发送者的),如果不需要reply的话就交给receive方法来处理
3、RpcEnvFactory是负责创建RpcEnv的,通过create方法创建RpcEnv实例对象,默认使用的是Netty
private def getRpcEnvFactory(conf: SparkConf): RpcEnvFactory = {
val rpcEnvNames = Map(
“akka” -> “org.apache.spark.rpc.akka.AkkaRpcEnvFactory”,
“netty” -> “org.apache.spark.rpc.netty.NettyRpcEnvFactory”)
val rpcEnvName = conf.get(“spark.rpc”, “netty”)
val rpcEnvFactoryClassName = rpcEnvNames.getOrElse(rpcEnvName.toLowerCase, rpcEnvName)
Utils.classForName(rpcEnvFactoryClassName).newInstance().asInstanceOf[RpcEnvFactory]
}

4、RpcEndpoint的生命周期
构造constructor 启动onStart 消息接收 receive、receiveAndReply 停止 onStop

相关文章推荐

大数据IMF传奇行动绝密课程第33课:Spark Executor内幕彻底解密

Spark Executor内幕彻底解密一、Spark Executor工作原理图 二、ExecutorBackend注册源码揭秘 三、Executor实例化内幕 四、Executor具体是如何...

大数据IMF传奇行动绝密课程第63课:Spark SQL下Parquet内幕深度解密

Spark SQL下Parquet内幕深度解密1、Spark SQL下的Parquet意义再思考 2、Spark SQL下的Parquet内幕揭秘一、Spark SQL下的Parquet意义再思考 ...

大数据IMF传奇行动绝密课程第31课:Spark资源调度分配内幕天机彻底解密

Spark资源调度分配内幕天机彻底解密一、分配Driver(Cluster) 二、为Application分配资源 三、两种不同的资源分配方式彻底揭秘 四、Spark资源分配的思考一、任务调度与...

大数据IMF传奇行动绝密课程第25课:Spark Sort-Based Shuffle内幕彻底解密

Spark Sort-Based Shuffle内幕彻底解密1、为什么使用Sort-Based Shuffle内幕彻底解密 2、Sort-Based Shuffle实战 3、Sort-Based ...

大数据IMF传奇行动绝密课程第87课:Flume推送数据到Spark Streaming案例实战和内幕源码解密

Flume推送数据到Spark Streaming案例实战和内幕源码解密1、Flume on HDFS案例回顾 2、Flume推送数据到Spark Streaming实战 3、原理绘图剖析 /*...

大数据IMF传奇行动绝密课程第37课:Task执行内幕与结果处理解密

Task执行内幕与结果处理解密1、Task执行原理流程图 2、Task执行内幕源码解密 3、Task执行结果在Driver上处理解密一、Task执行及结果处理原理流程图和源码解密 1、当Coar...

大数据IMF传奇行动绝密课程第36课:TaskScheduler内幕天机解密

TaskScheduler内幕天机解密1、TaskScheduler与SchedulerBackend 2、FIFO与FAIR两种调度模式彻底解密 3、Task数据本地性资源分配源码实现一、通过s...

大数据IMF传奇行动绝密课程第15课:RDD创建内幕彻底解密

RDD创建内幕彻底解密为什么RDD有很多种创建方法因为Spark运行的介质、硬件存储不同Spark和Hadoop有没有关系? 没关系,Spark可以以Hadoop作为存储 学Spark有没有必要学...

大数据IMF传奇行动绝密课程第35课:打通Spark系统运行内幕机制流程循环图

打通Spark系统运行内幕机制流程循环图 一、TaskScheduler原理解密 1、DAGScheduler在提交TaskSet给底层调度器的时候是面向接口TaskScheduler的,这符合面...

大数据IMF传奇行动绝密课程第26课:Spark Runtime内幕揭秘

Spark Runtime内幕揭秘1、再论Spark集群部署 1)从Spark Runtime的角度来讲有五大核心对象:Master、Worker、Executor、Driver、CoarseGra...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:大数据IMF传奇行动绝密课程第43课:Spark 1.6 Rpc内幕解密
举报原因:
原因补充:

(最多只允许输入30个字)