广义组合(学习笔记)

原创 2007年09月20日 03:00:00


[定理] X为包含k个元素的集合,对X中元素进行不记顺序的n次复制,共有

C(n+k-1,k-1)种可能的结果。

注意是集合,元素是可区分的

换种不那么抽象的说法: 有k种颜色的小球,从中取n个小球, 可能的结果数

(每种颜色小球不加区分,个数极大:对任意n, 每种颜色小球的个数N>n)

教材上或许会出现这么一个难听的名字叫“隔板法”:在n+k-1个凳子中放k-1个“隔板”

(k-1个隔板可以把剩下的n个凳子分成k类, 每一类对应一种颜色)



上图中 k=3, n=6;  绿色对应隔板, 黄色对应小球..


[例]

设有一堆红色球、一堆蓝色球和一堆绿色球,每一堆都不少于8个。
(1) 从中抽出8个球,有多少种不同的抽法?
(2) 从中抽出8个球,要求每种颜色的球都得有,有多少种不同的抽法?
[解] (1) k=3,n=8,故方案数 C(8+3-1,3-1) = 45
(2)先将每种颜色的球拿一个出来后,问题转化为
(1)的情况,此时k=3,n=5,故方案数 C(5+3-1,3-1) = 21

[例] 设有整数域上的方程:x1 + x2 + x3 + x4 = 29 ,问:
(1) 该方程有多少非负整数解?
(2) 该方程有多少满足 x1>0, x2>1, x3>2, x4 >=0 的整数解?

[解] (1) 方程的每一个非负整数解相当于从4个元素中复制29个 的一个方案,其中从第i个元素中复制的个数为 xi ,i =1..4。故方案数 C(29+4-1,4-1) = 4960
(2) 第1个元素至少选1个,第2个元素至少选2个,第3个元素至少选3个,剩下的23个可任意选择。故方案数为 C(23+4-1,4-1) = 2600


组合数学_学习笔记(一)

Talking about combinatorics
  • Vitalia
  • Vitalia
  • 2017年08月26日 19:09
  • 316

【机器学习-斯坦福】学习笔记4 - 牛顿方法

网”主题有奖征文   【机器学习-斯坦福】学习笔记4 - 牛顿方法 分类: 机器学习2013-10-10 12:45 74人阅读 评论(0) 收藏 举报 机器学习牛...
  • pi9nc
  • pi9nc
  • 2013年10月10日 14:53
  • 7921

数据结构学习-数组和广义表

问题描述:假设n*n的稀疏矩阵A采用三元组表示,设计一个程序实现如下功能: 1.生成如下2个稀疏矩阵的三元组a和b; ⎡ ⎣ ⎢ ⎢ ⎢ 1000 0100 3011 0001 ⎤ ...
  • shope9
  • shope9
  • 2016年05月31日 17:20
  • 1072

机器学习-组合算法总结

组合模型 组合模型一般要比单个算法要好,下面简单的介绍下Bootstraping, Bagging, Boosting, AdaBoost, RandomForest 和Gradient boo...
  • qq_23052951
  • qq_23052951
  • 2016年12月18日 21:03
  • 1002

Linux学习笔记之——起始篇

摘要:学习笔记目录、方便以后回顾、没有什么捷径可走、不断的记录、总结、练习、coding、coding。...
  • chenghuaying
  • chenghuaying
  • 2014年03月31日 16:47
  • 4540

在计算机学习,善用“笔记软件”

为知笔记 Linux 版 2015-12-03 产品更新 提示:软件的名称由wiznote修改为WizNote,在终端命令行下需要使用WizNote来打开程序。 更新日志: 2.3.2 版本(201...
  • Lina_ACM
  • Lina_ACM
  • 2016年08月03日 10:41
  • 800

斯坦福机器学习网易公开课笔记1

之前在coursera上看了Andrew Ng的机器学习课程,那个课程比较简明,适合对机器学习有一个整体的印象,但是很多细节的内容和推导都忽略了。现在想要了解机器学习更多,所以开始看Andrew Ng...
  • zhonglj0314
  • zhonglj0314
  • 2017年02月20日 09:57
  • 524

集成学习-模型融合学习笔记

集成学习概念个人理解是按照不同的思路来组合基础模型,在保证准确度的同时也提升了模型防止过拟合的能力。 三种常见的集成学习框架:bagging,boosting和stackingboosting算法A...
  • q383700092
  • q383700092
  • 2016年12月10日 11:33
  • 3175

《Java JDK8学习笔记》读书笔记(4)

第4章 认识对象 学习目标  区分基本类型与对象类型  了解对象与引用的关系  从打包器认识对象  以对象观点看待数组  认识字符串的特性...
  • mouyong
  • mouyong
  • 2016年04月18日 20:10
  • 4406

Angularjs 学习笔记(一)基础

1.简介: Angular JS (Angular.JS) 是一组用来开发Web页面的框架、模板以及数据绑定和丰富UI组件。它支持整个开发进程,提供web应用的架构,无需进行手工DOM操作。 Ang...
  • qq_25178609
  • qq_25178609
  • 2016年10月02日 16:13
  • 468
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:广义组合(学习笔记)
举报原因:
原因补充:

(最多只允许输入30个字)