广义组合(学习笔记)

原创 2007年09月20日 03:00:00


[定理] X为包含k个元素的集合,对X中元素进行不记顺序的n次复制,共有

C(n+k-1,k-1)种可能的结果。

注意是集合,元素是可区分的

换种不那么抽象的说法: 有k种颜色的小球,从中取n个小球, 可能的结果数

(每种颜色小球不加区分,个数极大:对任意n, 每种颜色小球的个数N>n)

教材上或许会出现这么一个难听的名字叫“隔板法”:在n+k-1个凳子中放k-1个“隔板”

(k-1个隔板可以把剩下的n个凳子分成k类, 每一类对应一种颜色)



上图中 k=3, n=6;  绿色对应隔板, 黄色对应小球..


[例]

设有一堆红色球、一堆蓝色球和一堆绿色球,每一堆都不少于8个。
(1) 从中抽出8个球,有多少种不同的抽法?
(2) 从中抽出8个球,要求每种颜色的球都得有,有多少种不同的抽法?
[解] (1) k=3,n=8,故方案数 C(8+3-1,3-1) = 45
(2)先将每种颜色的球拿一个出来后,问题转化为
(1)的情况,此时k=3,n=5,故方案数 C(5+3-1,3-1) = 21

[例] 设有整数域上的方程:x1 + x2 + x3 + x4 = 29 ,问:
(1) 该方程有多少非负整数解?
(2) 该方程有多少满足 x1>0, x2>1, x3>2, x4 >=0 的整数解?

[解] (1) 方程的每一个非负整数解相当于从4个元素中复制29个 的一个方案,其中从第i个元素中复制的个数为 xi ,i =1..4。故方案数 C(29+4-1,4-1) = 4960
(2) 第1个元素至少选1个,第2个元素至少选2个,第3个元素至少选3个,剩下的23个可任意选择。故方案数为 C(23+4-1,4-1) = 2600


相关文章推荐

机器学习笔记1_3:广义线性模型(GLM, Generalized Linear Models)

形式: η\eta称为自然参数(natural parameter), T(y)是充分统计量(通常T(y)=y),a(η)a(\eta)称为log partition function,上式中e...
  • BUPT_WX
  • BUPT_WX
  • 2016年04月21日 14:05
  • 1001

scikit-learn学习笔记:1.1 广义线性模型-普通的最小二乘(Ordinary Least Squares)

scikit-learn学习笔记:1.1 广义线性模型-普通的最小二乘(Ordinary Least Squares)

【学习笔记】斯坦福大学公开课(机器学习) 之广义线性模型

广义线性模型(GLM)是在指数分布族基础上形成的模型,对于指数分布族中,参数η\eta都可以有其他对应函数来替代,从而得到指数分布族模型的扩展。为引入GLM来解决问题,我们做三个假设: 1.y|x;...

scikit-learn学习笔记(三)Generalized Linear Models ( 广义线性模型 )

Generalized Linear Models ( 广义线性模型 ) 以下是一组用于回归的方法,其中目标值预期是输入变量的线性组合。在数学概念中,如果  是预测值。 在整个模块中,我们指定向量 ...

从GLM广义线性模型到线性回归、二项式及多项式分类——机器学习笔记整理(一)

作为一名机器学习的爱好者,最近在跟着Andrew Ng 的 Machine Learning 学习。在讲义的第一部分中,Ng首先讲解了什么叫做监督学习,其次讲了用最小二乘法求解的线性模型,用sigmo...
  • gactyxc
  • gactyxc
  • 2016年09月11日 19:16
  • 734

机器学习笔记五:广义线性模型(GLM)

一.指数分布族在前面的笔记四里面,线性回归的模型中,我们有,而在logistic回归的模型里面,有。事实上,这两个分布都是指数分布族中的两个特殊的模型。所以,接下来会仔细讨论一下指数分布族的一些特点,...

Matlab图像处理学习笔记(八):用广义霍夫变换筛选sift特征点

经过几天的学习研究,终于完成了广义霍夫变换(Generalised Hough transform)对特征点的筛选。此法不仅仅针对sift特征点,surf,Harris等特征点均可适用。 这几天我发...

模式识别(Pattern Recognition)学习笔记(十二)--SVM(广义):大间隔

转载出处:http://blog.csdn.net/eternity1118_。  在学习之前,先说一些题外话,由于博主学习模式识别没多久,所以可能对许多问题还没有深入的认识和正确的理解,如...

【机器学习-斯坦福】学习笔记4 ——牛顿方法;指数分布族; 广义线性模型(GLM)

牛顿方法 本次课程大纲: 1、  牛顿方法:对Logistic模型进行拟合 2、 指数分布族 3、  广义线性模型(GLM):联系Logistic回归和最小二乘模型   复习: Logi...

监督学习之广义线性模型——Andrew Ng机器学习笔记(三)

内容提要这篇博客的主要内容有 - 牛顿法 - 指数分布族(Exponential Family) - 广义线性模型(Generalized Linear Models) - Softmax R...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:广义组合(学习笔记)
举报原因:
原因补充:

(最多只允许输入30个字)